C | 2 | 3 | 0 | 0 | 0 | ||
Б | Cб | A0 | A1 | A2 | A3 | A4 | A5 |
A3 | 0 | 10 | 1 | 5 | 1 | 0 | 0 |
A4 | 0 | 12 | 3 | 2 | 0 | 1 | 0 |
A5 | 0 | 10 | 2 | 4 | 0 | 0 | 1 |
d | 0 | -2 | -3 | 0 | 0 | 0 |
Так как при решении задачи на max не все симплекс-разности положительные, то оптимальное решение можно улучшить.
4. Определяем направляющий столбец j*. Для задачи на max он определяется минимальной отрицательной симплекс-разностью. В данном случае это вектор А2
5. Вектор i*, который нужно вывести из базиса, определяется по отношению :
min
при аi j > 0В данном случае сначала это А3 .
5. Заполняется новая симплекс-таблица по исключеню Жордана - Гаусса :
а). направляющую строку i* делим на направляющий элемент :
a i j = a i j / a i j , где j = 1..6
б). преобразование всей оставшейся части матрицы :
a ij = aij - a i j× aij , где i ¹ i* , j ¹ j*
В результате преобразований получаем новую симплекс-таблицу :
C | 2 | 3 | 0 | 0 | 0 | ||
Б | Cб | A0 | A1 | A2 | A3 | A4 | A5 |
A2 | 3 | 2 | 1/5 | 1 | 1/5 | 0 | 0 |
A4 | 0 | 8 | 13/5 | 0 | -2/5 | 1 | 0 |
A5 | 0 | 2 | 6/5 | 0 | -4/5 | 0 | 1 |
d | 6 | -7/5 | 0 | 3/5 | 0 | 0 |
Повторяя пункты 3 - 5, получим следующие таблицы :
C | 2 | 3 | 0 | 0 | 0 | ||
Б | Cб | A0 | A1 | A2 | A3 | A4 | A5 |
A2 | 3 | 5/3 | 0 | 1 | 1/3 | 0 | -1/6 |
A4 | 0 | 11/3 | 0 | 0 | 4/3 | 1 | -13/6 |
A1 | 2 | 5/3 | 1 | 0 | -2/3 | 0 | 5/6 |
d | 8 1/3 | 0 | 0 | -1/3 | 0 | 7/6 |
C | 2 | 3 | 0 | 0 | 0 | ||
Б | Cб | A0 | A1 | A2 | A3 | A4 | A5 |
A2 | 3 | 3/4 | 0 | 1 | 0 | -1/4 | 3/8 |
A3 | 0 | 11/4 | 0 | 0 | 1 | 3/4 | -13/8 |
A1 | 2 | 7/2 | 1 | 0 | 0 | 1/2 | -1/4 |
d | 9 1/4 | 0 | 0 | 0 | 1/4 | 5/8 |
Так как все симплекс-разности положительны, то оптимальное решение найдено :
X = ( 7/2 , 3/4 , 11/4 , 0 , 0 ) ( единиц )
max F = 9 1/4 ( рублей )
4. АНАЛИЗ МОДЕЛИ НА ЧУВСТВИТЕЛЬНОСТЬ
4.1 Построение двойственной задачи и её численное решение
Проведение анализа на чувствительность связано с теорией двойственности, поэтому в курсовой работе необходимо построить двойственную задачу и найти её численное решение.
Для рассматриваемой модели двойственная задача имеет вид :
min T( y ) = min ( 10y1 + 12y2 + 10y3 ) при условиях
y1 + 3y2 + 2y3 ³ 2 А1
5y1 + 2y2 + 4y3³ 3 А2
y1³ 0 , y2³0 , y3³ 0. А3, А4, А5
Оптимальное решение двойственной задачи получается при решении прямой задачи из последней симплекс-таблицы. В результате получаем оптимальное решение двойственной задачи :
Yопт = ( 0, 1/4, 5/8, 0, 0 ), для которого Т(yопт) = 9 1/4.
Оптимальное значение целевой функции в двойственной задачи совпадает с оптимумом целевой функции прямой задачи, в чём не трудно убедиться.
4.2 Определение статуса ресурсов
Ресурсы относятся к дефицитным, если оптимальный план предусматривает их полное использование, при частичном использовании ресурсов, они считаются не дефицитными. Статус ресурсов для любой модели линейного программирования можно установить непосредственно из оптимальной симплекс-таблицы исходной по значению дополнительных переменных. Положительное значение дополнительной переменной указывает на неполное использование соответствующего ресурса, т.е. на его недефицитность, нулевое значение дополнительной переменной указывает на дефицитность ресурса.
Для данного примера дополнительные переменные х4 и х5 равны нулю, следовательно, оборудование второго и третьего типов являются “дефицитными”, а первого типа - “недефицитным” ( х3 = 2,75 ). Такой же вывод можно сделать из решения двойственной задачи.
4.3 Определение значимости ресурсов
Значимость ресурса характеризуется величиной улучшения оптимального значения целевой функции F, приходящейся на единицу прироста данного ресурса. Значимость ресурсов всегда можно определить по значению двойственных переменных в оптимальном решении двойственной задачи.
В данном случае Yопт = ( 0, 1/4, 5/8, 0, 0 ). Таким образом, из двух “дефицитных” ресурсов оборудование второго типа имеет большую значимость и увеличении интервала работы на этом оборудовании более выгодно с точки зрения влияния на значение целевой функции.
4.4 Определение допустимого интервала изменения запаса ресурсов
Изменение отведённого администрацией предприятия времени ( т.е. правых частей ограничений ) может привести к недопустимости текущего решения. Поэтому важно определить диапазон изменений компонент вектора ограничений, в котором допустимость решений не нарушается.
Оборудование второго типа, которое используется для изготовления изделий, является “дефицитным и имеет большую значимость. Определим диапазон допустимых изменений интервала работы на этом оборудовании. Оптимальная симплекс-таблица задачи имеет вид :
C | 2 | 3 | 0 | 0 | 0 | ||
Б | Cб | A0 | A1 | A2 | A3 | A4 | A5 |
A2 | 3 | 3/4 | 0 | 1 | 0 | -1/4 | 3/8 |
A3 | 0 | 11/4 | 0 | 0 | 1 | 3/4 | -13/8 |
A1 | 2 | 7/2 | 1 | 0 | 0 | 1/2 | -1/4 |
d | 9 1/4 | 0 | 0 | 0 | 1/4 | 5/8 |
Так как начальными базисными переменными являлись x1, x2, x3 в оптимальной симплексной таблице в соответствующих столбцах расположена матрица А-1 Изменим время работы на оборудование второго типа на величину D2, тогда время работы будет 12 + D2 .
Найдём базисное решение, соответствующее изменённому времени работы на оборудовании второго типа :
0.75 - D2 / 4 ³ 0 , D2 = 3;
2.75 + 3D2 / 4 ³ 0 , D2 = -3.66;
3.5 + D2 / 2 ³ 0 , D2 = -7.
Отсюда видно, что -3.66 £D2£ 3 , т.е. 8.34 £ b2£ 15 .
Таким образом первоначальный интервал работы на оборудовании второго типа может быть увеличен до 15 часов или уменьшен до 8.34 часа без нарушения допустимого решения. Уменьшение времени влечёт за собой уменьшение единиц вырабатываемой продукции, поэтому является не целесообразным.
4.5 Исследование зависимости оптимального решения от изменений запасов ресурсов
Изменение свободного члена ограничения исходной задачи на величину D2 вызывает изменение целевой функции на DF = Di × y j .Если приращение времени работы берется из интервала допустимых изменений, значений двойственных оценок остаются неизменными. Таким образом, изменение целевой функции будет линейно зависеть от изменения времени работы.
В данном примере DF = Di × 12 = 12 ×Di . Ищется зависимость значений целевой функции от изменения времени работы на оборудовании второго типа. Для этого изменяется время работы начиная от 0 часов с шагом h = 0.5 до 3 часов. Результаты измерений приведены в таблице 1.
Таблица 1
D2, часов | 0 | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 |
b2, часов | 12 | 12.5 | 13 | 13.5 | 14 | 14.5 | 15 |
DF, руб. | 0 | 6.25 | 13 | 20.25 | 28 | 36.25 | 45 |
F, руб. | 9.25 | - | - | - | - | - |
Т.к. зависимость F( b2 ) - линейная, то достаточно подсчитать значение функции в двух крайних точках интервала.
Cледовательно, с увеличением времени работы на оборудовании второго типа на 2 часа увеличивается и объём изделий на общей стоимостью 28 рублей.
5. ГРАФИЧЕСКОЕ ПРЕДСТАВЛЕНИЕ ПОЛУЧЕННЫХ РЕЗУЛЬТАТОВ
Графический метод применим только для двух и менее переменных х, что подходит к данному заданию. Линии, соответствующие ограничения, строятся на осях Ох. Заштрихованная область - область допустимых стратегий.
x1 + 5x2 £10;
3x1 + 2x2 £ 12 ;
2x1 + 4x2£ 10 .
x1 ³ 0 ; x2³ 0 .
1). x1 + 5x2 £10;
x1 = 0, x2 = 2;
x1 = 10, x2 = 0.
2). 3x1 + 2x2 £ 12 ;
x1 = 0, x2 = 6;
x1 = 4, x2 = 0.
3). 2x1 + 4x2£ 10 ;
x1 = 0, x2 = 2.5;
x1 = 5, x2 = 0.
4). Найдём экстремум функции :
F = 2x1 + 3x2 ,
6. ВЫВОДЫ И РЕКОМЕНДАЦИИ ПО ПРАКТИЧЕСКОМУ ИСПОЛЬЗОВАНИЮ
Составление математической модели и решение систем линейных неравенств часто имеет место в реальной жизни. Примеры таких задач :