ИСПОЛЬЗОВАНИЕ ТАБЛИЧНОГО СИМПЛЕКС-МЕТОДА ДЛЯ РЕШЕНИЯ ЗАДАЧ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ ДЛЯОПТИМИЗАЦИИ ЭКОНОМИЧЕСКИХ ЗАДАЧ
ВВЕДЕНИЕ
Цель данного курсового проекта - составить план производства требуемых изделий, обеспечивающий максимальную прибыль от их реализации, свести данную задачу к задаче линейного программирования, решить её симплекс - методом и составить программу для решения задачи этим методом на ЭВМ.
1.КРАТКИЙ ОБЗОР АЛГОРИТМОВ РЕШЕНИЯ ЗАДАЧ ДАННОГО ТИПА
1.1 Математическое программирование
Математическое программирование занимается изучение экстремальных задач и поиском методов их решения. Задачи математического программирования формулируются следующим образом : найти экстремум некоторой функции многих переменных f ( x1, x2, ... , xn ) при ограничениях gi ( x1, x2, ... , xn ) * bi , где gi - функция, описывающая ограничения, * - один из следующих знаков £ , = , ³ , а bi - действительное число, i = 1, ... , m. f называется функцией цели ( целевая функция ).
Линейное программирование - это раздел математического программирования, в котором рассматриваются методы решения экстремальных задач с линейным функционалом и линейными ограничениями, которым должны удовлетворять искомые переменные.
Задачу линейного программирования можно сформулировать так . Найти max
при условии : a11 x1 + a12 x2 + . . . + a1n xn £ b1 ;
a21 x1 + a22 x2 + . . . + a2n xn £ b2 ;
. . . . . . . . . . . . . . . . . . . . . . . . . . . .
am1 x1 + am2 x2 + . . . + amn xn £ bm ;
x1³ 0, x2³ 0, . . . , xn³ 0 .
Эти ограничения называются условиями неотрицательности. Если все ограничения заданы в виде строгих равенств, то данная форма называется канонической.
В матричной форме задачу линейного программирования записывают следующим образом. Найти max cT x
при условии
A x £ b ;
x ³ 0 ,
где А - матрица ограничений размером ( m´n), b(m´1) - вектор-столбец свободных членов, x(n ´ 1) - вектор переменных, сТ = [c1, c2, ... , cn ] - вектор-строка коэффициентов целевой функции.
Решение х0 называется оптимальным, если для него выполняется условие сТ х0³ сТ х, для всех х Î R(x).
Поскольку min f(x) эквивалентен max [ - f(x) ] , то задачу линейного программирования всегда можно свести к эквивалентной задаче максимизации.
Для решения задач данного типа применяются методы:
1) графический;
2) табличный ( прямой, простой ) симплекс - метод;
3) метод искусственного базиса;
4) модифицированный симплекс - метод;
5) двойственный симплекс - метод.
1.2 Табличный симплекс - метод
Для его применения необходимо, чтобы знаки в ограничениях были вида “ меньше либо равно ”, а компоненты вектора b - положительны.
Алгоритм решения сводится к следующему :
Приведение системы ограничений к каноническому виду путём введения дополнительных переменных для приведения неравенств к равенствам.
Если в исходной системе ограничений присутствовали знаки “ равно ”или “ больше либо равно ”, то в указанные ограничения добавляются
искусственные переменные, которые так же вводятся и в целевую функцию со знаками, определяемыми типом оптимума.
Формируется симплекс-таблица.
Рассчитываются симплекс-разности.
Принимается решение об окончании либо продолжении счёта.
При необходимости выполняются итерации.
На каждой итерации определяется вектор, вводимый в базис, и вектор, выводимый из базиса. Таблица пересчитывается по методу Жордана-Гаусса или каким-нибудь другим способом.
1.3 Метод искусственного базиса
Данный метод решения применяется при наличии в ограничении знаков “ равно ”, “ больше либо равно ”, “ меньше либо равно ” и является модификацией табличного метода. Решение системы производится путём ввода искусственных переменных со знаком, зависящим от типа оптимума, т.е. для исключения из базиса этих переменных последние вводятся в целевую функцию с большими отрицательными коэффициентами m , а в задачи минимизации - с положительными m . Таким образом из исходной получается новая m - задача.
Если в оптимальном решении m - задачи нет искусственных переменных, это решение есть оптимальное решение исходной задачи. Если же в оптимальном решении m - задачи хоть одна из искусственных переменных будет отлична от нуля, то система ограничений исходной задачи несовместна и исходная задача неразрешима.
1.4 Модифицированный симплекс - метод
В основу данной разновидности симплекс-метода положены такие особенности линейной алгебры , которые позволяют в ходе решения задачи работать с частью матрицы ограничений. Иногда метод называют методом обратной матрицы.
В процессе работы алгоритма происходит спонтанное обращение матрицы ограничений по частям, соответствующим текущим базисным векторам. Указанная способность делает весьма привлекательной машинную реализацию вычислений вследствие экономии памяти под промежуточные переменные и значительного сокращения времени счёта. Хорош для ситуаций, когда число переменных n значительно превышает число ограничений m.
В целом, метод отражает традиционные черты общего подхода к решению задач линейного программирования, включающего в себя канонизацию условий задачи, расчёт симплекс-разностей, проверку условий оптимальности, принятие решений о коррекции базиса и исключение Жордана-Гаусса.
Особенности заключаются в наличии двух таблиц - основной и вспомагательной, порядке их заполнения и некоторой специфичности расчётных формул.
2. СОДЕРЖАТЕЛЬНАЯ ПОСТАНОВКА ЗАДАЧИ
Для производства двух видов изделий А и В используется три типа технологического оборудования. На производство единицы изделия А идёт времени, часов : оборудованием 1-го типа - а1 , оборудованием 2-го типа - а2 , оборудованием 3-го типа - а3 .На производство единицы изделия В идёт времени, часов : оборудованием 1-го типа - b1 , оборудованием 2-го типа - b2 ,, оборудованием 3-го типа - b3 .
На изготовление всех изделий администрацияпредприятия может предоставить оборудование 1-го типа не более, чем на t1 ,оборудование 2-го типа не более, чем на t2 , оборудование 3-го типа не более, чем на t3 часов.
Прибыль от реализации единицы готового изделия А составляет a рублей, а изделия В - b рублей.
Составить план производства изделий А и В, обеспечивающий максимальную прибыль от их реализации. Решить задачу простым симплекс-методом. Дать геометрическое истолкование задачи, используя для этого её формулировку с ограничениями-неравенствами.
а1 = 1 b1 = 5 t1 = 10 a = 2
а2 = 3 b2 = 2 t2 = 12 b = 3
а3 = 2 b3 = 4 t3 = 10
3. РАЗРАБОТКА И ОПИСАНИЕ АЛГОРИТМА РЕШЕНИЯ ЗАДАЧИ
3.1 Построение математической модели задачи
На произв-во изделия А, часов | На произв-во изделия B, часов | Предпр-е предоставит, часов | |
Оборуд-е 1го типа | 1 | 5 | 10 |
Оборуд-е 2го типа | 3 | 2 | 12 |
Оборуд-е 3го типа | 2 | 4 | 10 |
Прибыль от реализации, за ед. изд-я | 2 | 3 |
Построение математической модели осуществляется в три этапа :
1. Определение переменных, для которых будет составляться математическая модель.
Так как требуется определить план производства изделий А и В, то переменными модели будут:
x1 - объём производства изделия А, в единицах;
x2 - объём производства изделия В, в единицах.
2. Формирование целевой функции.
Так как прибыль от реализации единицы готовых изделий А и В известна, то общий доход от их реализации составляет 2x1 + 3x2 ( рублей ). Обозначив общий доход через F, можно дать следующую математическую формулировку целевой функции : определить допустимые значения переменных x1 и x2 , максимизирующих целевую функцию F = 2x1 + 3x2 .
3. Формирование системы ограничений.
При определении плана производства продукции должны быть учтены ограничения на время, которое администрация предприятия сможет предоставить на изготовления всех изделий. Это приводит к следующим трём ограничениям :
x1 + 5x2 £10;3x1 + 2x2 £ 12 ; 2x1 + 4x2£ 10 .
Так как объёмы производства продукции не могут принимать отрицательные значения, то появляются ограничения неотрицательности :
x1 ³ 0 ; x2³ 0 .
Таким образом, математическая модель задачи представлена в виде : определить план x1 , x2 , обеспечивающий максимальное значение функции :
max F = max ( 2x1 + 3x2 )
при наличии ограничений :
x1 + 5x2 £10;
3x1 + 2x2 £ 12 ;
2x1 + 4x2£ 10 .
x1 ³ 0 ; x2³ 0 .
3.2 Решение задачи вручную
Табличный метод ещё называется метод последовательного улучшения оценки. Решение задачи осуществляется поэтапно.
1. Приведение задачи к форме :
x1 + 5x2 £10;
3x1 + 2x2 £ 12 ;
2x1 + 4x2£ 10 .
x1 ³ 0 ; x2³ 0 .
2. Канонизируем систему ограничений :
x1 + 5x2 + x3 =10;
3x1 + 2x2 + x4 = 12 ;
2x1 + 4x2 + x5 = 10 .
x1 ³ 0 ; x2³ 0 .
A1 A2 A3 A4 A5 A0
3. Заполняется исходная симплекс-таблица и рассчитываются симплекс-разности по формулам :
d0 =
- текущее значение целевой функцииdi =
- расчёт симплекс-разностей, где j = 1..6 .