Смекни!
smekni.com

Сравнительная характеристика МП с 16- и 32-разрядной архитектурой (стр. 3 из 4)

Внутри режима с защитой программа может осуществить переключение задач для того, чтобы войти в задачи, отмечаемые как задачи виртуального режима 8086. Каждая такая задача позволяет исполняться любым программам 8086 (прикладной или целой ОС). Виртуальные задачи 8086 могут быть изолированы и защищены друг от друга и от главной ОС при помощи страничной адресации и эмуляции команд ввода-вывода.

В 80386 имеются 32 регистра, разделяемых на следующие группы:

общего назначения; сегментные; указатель команд и флаги; управления.

Шесть программнодоступных регистров отладки реализуют поддержку процесса отладки программ: четыре указывают четыре точки останова, управляющий используется для установки конторльных точек, а статусный показывает текущее состояние точек останова. Эти регистры обеспечивают задание контрольных точек останова по командам и данным, а также пошаговый режим выполнения программы.

СИСТЕМА КОМАНД МП 80386 подразделяется на следующие классы опера ций; пересылку данных; арифметику; сдвиг (циклический сдвиг); работу со строками; работу с битами; передачу управления; поддержку языков высокого уровня;поддержку ОС; управление процессором. Она содержит набор команд 80286 и дополнительные команды.

МИКРОПРОЦЕССОРНЫЙ НАБОР 80486.

Включает следующие микросхемы:

80486 - быстродействующий 32-разрядный МП;

82596СА - 32-разрядный сопроцессор LAN;

82320 - контроллер магистрали Micro Chanel (MCA);

82350 - контроллер магистрали EISA;

82С508 - микросхема программируемой логики, минимизирующая объем

оборудования основной платы.

МП 80486 использует CISC-архитектуру и обеспечивает программную совместимость с 80386, в 2-4 раза более производительнее 80386 вследствии частичного применения RISC-архитектуры и внутренней 128-разрядной шины данных, внутреннего ОЗУ емкостью 8 Кбайт, реализации функций математического сопроцессора 80387, контроллера кэш-памяти 82385. Система команд содержит набор команд 80386 и дополнительные команды.

МП содержит более 1 млн. транзисторов, имеет тактовую частоту 25 или 33 МГц и размещен в 186-выводном корпусе с матричным расположением выводов. В МП используются раздельные 32-разрядные шины адреса и данных, обеспечивающие в монопольном режиме скорость передачи данных до 106 Мбайт/с (при тактовой частоте 33 МГц).

Сопроцессор 82596 оптимизирован для выполнения функций файл-сервера, построения одно- и многопользовательских рабочих станций и мини-компьютера. Сопроцессор использует при передаче данных 32-разрядные шины и сигналы, что позволяет упростить сопряжение с арифметическими сопроцессорами и системной магистралью.

Фирма INTEL первой выпустила 16-битные МП. МП 8086 представляет собой значительно усовершенствованный вариант МП 8086/8085,а МП 8088 почти аналогичен 8086, но его внешняя шина данных имеет 8 бит.

Фирма INTEL лидирует на рынке 26-битных МП, МП 8086/8088 доминируют в конторских компьютерах, они применялись , например, в первых моделях IBM BC (8088), ACT SIRIUS (8088), DEC RAINBOW (8088), APRICOT (8086). В последующих моделях IBM PC ( и и в много численных "колоннах") используются более мощные МП 80186, 80286, 80386. Основные преимущества 16-битных МП фирмы INTEL и других фирм по сравнению с 8-битными заключается в следующем:

а) более быстрое выполнение команд;

б) расширенная система команд(например, имеются команды умножения и деления);

в) увеличенный объем памяти ( обычно 1 Мбайт и более) по сравне нию с 64 К байтами;

г) расширенный диапозон целых чисел ( от 0 до 64К вместо от 0 до 255);

д) большее число режимов адресации, что упрощает программы и по вышает их эффективность;

е) применение сопроцессоров, помогающих ЦП быстрее выполнять программы.

После хорошо зарекомендовавших себя 16-битных МП в начале 80-х годов стал неизбежен переход к 32-битным устройствам, которые обладают следующими преимуществами:

- позволяют обрабатывать 32-битные данные с большим диапазоном це лых чисел;

- обладают большем диапазоном адресации памяти, обычно 4 Гбайта; имеют более высокую скорость работы с частотой синхронизации 16 МГц и выше;

- характеризуются дополнительным набором команд и режимов адресации с обеспечение совместимости вверх с их предшественниками;

- имеют внутренние средства управления памятью и внутреннюю кэш-па мять для команд, в которой хранятся наиболее часто используемые команды и данные;

- обеспечивают увеличение производительности в 2-3 раза на стан дартных бенчмарк-программах.

Фирмы производители 32-битных МП утверждают, что по вычислительной мощности эти приборы соперничают с традиционными миникомпьютерами, например машинами VAX фирмы DEK. Хотя это утверждение не является бесспорным (в части быстродействия по командам, с учетом быстродействия сопроцессора и поддержки сложной операционной системы), все же 32-битные МП широко применяются в инженерных рабочих станциях, в области распознавания речи, в роботах, для автоматизации учрежденческой деятельности и в больших много пользовательских и мультиплексорных системах.

Наибольшее распространение получили МП 80386 фирмы INTEL, MC68020 фирмы ZILOG и транспьютер Т424 фирмы INMOS. Если первые три процессора представляют собой естественную эволюцию своих 16-битных предшественников и имеют обычную архитектуру, то в транспьютере реализован совершенно новый подход к архитектуре машины. По существу, он является RISC-процессором (компьютер со сокращенной системой команд) в отличие от CISC-процессора (компьютер со сложной системой команд).

Транспьютер спроектирован для работы в мультиплексорной конфигурации, т.е. несколько транспьютеров параллельно выполняют одну программную задачу. Разработка RISC-процессора является попыткой отойти от эволюционного развития ЦП с постепенным усложнением системы команд. Несколько исследовательских организаций и университетов попытались разработать ЦП с намного меньшим числом команд, что обеспечивает зна чительное повышение его производительности.

Важнейшие особенности " чистого " RISC-процессора заключаются в однотактной работе (многочисленные обращения к памяти не предусматриваются) и аппаратном управлении (выполнение команд опирается на быстро действующие схемы, а не на микрокод в отличие от обычных МП , в которых применяется медлительное управление через табличный микрокод, определяющий операции ЦП в каждой команде). Промышленный выпуск 32-битных RISC-процессоров пока освоили только фирмы INMOS (транспьютер) и ACORN (ARM - ACORN Mashine). Не исключено, что в архитектурах будущих компьютеров будет преобладать данный подход для обеспечения их более высокой производительности.

В 32-битных процессорах 80386, МС8020 и Z80000 используются кэш-память для команд и управление памятью, о которой необходимо сказать несколько слов. Очень быстрая кэш-память встроена в сам ЦП, либо помещается между основной памятью.Большая основная память всегда реализуется на микросхемах динамических ЗУПВ, которые хотя и дешевле,но менее быстродействующие по сравнению со статическими ЗУПВ. Если наиболее часто адресуемые команды и данные хранить в быстродействующей кэш-памяти на микросхемах статических ЗУПВ, то можно ускорить выполнение программы.

В большинстве программ наблюдается тенденция обращений к одним и тем же адресам памяти. В кэш-памяти хранится содержимое этих адресов вместе с самими адресами. Когда при выполнении программы потребуется содержимое одного из этих адресов, например считывается команда программы, кэш-память производит очень быстрое сравнение , определяя, не соответствует ли тэг (признак) запрошенного ЦП адреса одному из хранимых в кэш-памяти элементов. В случае успеха (попадания) команду можно считать из кэш-памяти, не обращаясь к медленной основной памяти. Чтобы оправдать применение Кэш-памяти, коэффициент попаданий должен быть достаточно высоким (обычно более 80% ). Типичный размер кэш-памяти составляет 4 Кбайта. Очевидно, чем больше кэш-память, тем выше коэффициент попаданий.

Управление памятью, введенное в 32-битные процессоры, предназначается для максимального распределения областей памяти между различными программами (и их данными), а также для обеспечения защиты программ. Это устройство может быть встроено в ЦП или быть выполнено в виде отдельной микросхемы, Устройство управления памятью преобразует формируемый ЦП логический адрес памяти в физический адрес, который и подается в память. Следовательно, ОС передает управление от одной программы к другой,причем обе программы разделяют один и тот же диапозон логических адресов, но в физической памяти они расположены отдельно. Кроме того, УУП обеспечивает защиту программ или данных, например, допуская считывание и назначая уровни привилегий.

Все 32-разрядные МП могут работать с сопроцессорами, среди кото рых наиболее распространен арифметический процессор с плавающей точкой. Все арифметические сопроцессоры удовлетворяют стандарту IEEE P754 с 80-битной расширенной точностью.

МП производятся по NMOП- или КМОП-технологиям и содержат от 200 до 300 тыс. транзисторов. Из-за увеличенного числа внешних соединений пришлось отказаться от корпуса типа DIP и перейти к корпусу с четырехсторонним расположением выводов.

ТЕНДЕНЦИЯ РАЗВИТИЯ МП.

Тенденции МП определяются главным образом отставанием технологий их проектирования от более высоких темпов роста технологии производства микросхем, а также превышением спроса на популярные МП над предложением на продажу.

Характерным примером является развитие центральных МП с архитектурой 80386-80486. МП 80386 разработан по 0,3-Мбитной технологии (DRAM - 1 М, около 2 млн. транзисторов). В МП 80486 фактически был скопирован МП 80386, а в оставшиеся 700 тыс. транзисторов были размещены сопроцессор 80387 и кэш-память емкостью 8Кбайт.

В настоящее время в производство внедряется 4-Мбитная технология, в 1993-94 гг. ожидается 16-Мбитная технология, в 2000 г. - 128-Мбитная и т.д. Одновременно с этим существенно снижается стоимость производства 1 бита и соответственно МП. Например, стоимость МП 80486 снизится более чем в 30 раз.