Смекни!
smekni.com

Основы цифровой графики и цвета в Adobe (стр. 2 из 4)

белый снежный пейзаж с одинокой фигуркой вдалеке, или сцена рок-концерта с обилием цвета и форм. Если три параметра одинаковы — размер файла (без сжатия) будет практически одинаков.

Третий недостаток всплывет при попытке слегка повернуть изображение, например с четкими тонкими вертикальными линиями, на небольшой угол. Сразу обнаруживается, что четкие линии превращаются в «ступеньки». Это означает, что при любых трансформациях (поворотах, масштабировании, наклонах и так далее) в точечной графике невозможно обойтись без искажений (это продиктовано дискретной природой изображения).

Можно даже сказать, что точечную графику легче деформировать, чем трансформировать.

Поэтому в программах точечной графики большинство фильтров (всевозможные шумы, размытия, волны, ряби) если к ним приглядеться, не что иное, как сознательное искажение, то есть искажение, возведенное в принцип, а художественный эффект — это просто прием отвлечения внимания. Например, в программу Adobe Photoshop 4.0 включено около ста фильтров, половина из них представлена и в программе Adobe Illustrator (см. главу 12).

Графика точечная или векторная

Точечная графика оперирует элементами (пикселами), имеющими определенное цветовое значение и однозначное расположение в сетке битовой карты (рис. 4-5).

С такими изображениями работают точечные графические редакторы, например, Adobe Photoshop. Такие изображения получаются в результате работы команды Rasterize... (Растрировать...) в программе Adobe Illustrator.

Векторная графика оперирует математическими объектами, которые независимы от параметров внешнего устройства (монитора, принтера) (рис. 4-6).


Рис. 4-5. Точечное изображение и его фрагмент при большом увеличении

Рис. 4-6. Векторное изображение и его фрагмент при большом увеличении

При редактировании точечной графики изменяется цвет определенной совокупности пикселов. Изменение цвета имеет своим результатом изменение формы изображаемых предметов (цвет и форма неотделимы, цвет первичен, а форма — производное от цвета, в чистом виде форма не существует). Процесс создания изображений точечной графики, если не считать компьютерной специфики, практически идентичен работе художника, который за счет расположения на плоскости мазков краски создает иллюзорную действительность.

При редактировании векторной графики изменяется в первую очередь форма объекта, а цвет играет второстепенную роль (цвет и форма независимы друг от друга, форма первична, а цвет — просто заполнитель формы, в чистом виде цвет не существует). Процесс создания изображений векторной графики, если также не считать компьютерной специфики, напоминает работу художника-аппликатиста, который вырезает формы из белой бумаги, затем окрашивает их цветом или печатает на них клише, раскладывает их на плоскости (в том числе и перекрывая некоторые из них) и тем самым создает декоративную композицию.

Точечные изображения хороши для создания фотореалистических изображений с тонкими цветовыми переходами.

Векторные изображения используются для отображения объектов с четкой границей и ясными деталями — шрифт, логотип, графический знак, орнамент, декоративная композиция в рекламе и полиграфической продукции.

Пользователю, который занимается компьютерной цифровой графикой, версткой изданий, композицией, необходимо точно представлять себе достоинства и недостатки двух способов представления графической информации, с выгодой использовать достоинства и по мере возможности избегать недостатков.

Цветовые модели и цветовой охват

Мир, окружающий человека, воспринимается по большей части цветным. Цвет имеет не только информационную, но и эмоциональную составляющую. Человеческий глаз — очень тонкий инструмент, но к сожалению, восприятие цвета субъективно. Очень трудно передать другому человеку свое ощущение цвета.

Вместе с тем для многих отраслей производства, в том числе для полиграфии и компьютерных технологий, необходимы более объективные способы описания и обработки цвета.

В программе Adobe Illustrator для присвоения цветовых параметров объектам можно использовать несколько цветовых моделей в зависимости от задачи. Эти модели различаются по принципам описания единого цветового пространства, существующего в объективном мире.

Цветовая модель RGB

Множество цветов видны оттого, что объекты, их излучающие, светятся. К таким цветам можно отнести, например, белый свет, цвета на экранах те- левизора, монитора, кино, слайд-проектора и так далее. Цветов огромное количество, но из них выделено только три, которые считаются основными (первичными): это — красный, зеленый, синий.

При смешении двух основных цветов результирующий цвет осветляется: из смешения красного и зеленого получается желтый, из смешения зеленого и синего получается голубой, синий и красный дают пурпурный. Если смешиваются все три цвета, в результате образуется белый. Такие цвета называются аддитивными.

Модель, в основе которой лежат указанные цвета, носит название цветовой модели RGB — по первым буквам английских слов Red (Красный), Green (Зеленый), Blue (Синий).

Эта модель представляется в виде трехмерной системы координат (рис. 4-7). Каждая координата отражает вклад соответствующей составляющей в конкретный цвет в диапазоне от нуля до максимального значения. В результате получается некий куб, внутри которого и «находятся» все цвета, образуя цветовое пространство.


Рис. 4-7. Цветовая модель RGB представляется в виде трехмерного графика, у которого нулевая точка — черный цвет

Важно отметить особенные точки и линии этой модели.

• Начало координат: в этой точке все составляющие равны нулю, излучение отсутствует, а это равносильно темноте, т. е. это — точка черного цвета.

• Точка, ближайшая к зрителю: в этой точке все составляющие имеют максимальное значение, что дает белый цвет.

• На линии, соединяющей эти точки (по диагонали куба), располагаются серые оттенки: от черного до белого. Это происходит потому, что все три составляющих одинаковы и располагаются в диапазоне от нуля до максимального значения. Этот диапазон иначе называют серой шкалой (Grayscale). В компьютерных технологиях сейчас чаще всего используются 256 градаций (оттенков) серого. Хотя некоторые сканеры имеют возможность кодировать до 1024 оттенков серого и выше. • Три вершины куба дают чистые исходные цвета, остальные три отражают двойные смешения исходных цветов.

Увидеть и определить цвета и параметры этой модели можно на палитре Color (Синтез).

Эта модель, конечно, не совсем привычна для художника или дизайнера, но ее необходимо принять и в ней разобраться вследствие того, что с этой моделью работают сканер и экран монитора — два важнейших звена в обработке цветовой информации.

Цветовая модель CMYK

К отражаемым относятся цвета, которые сами не излучают, а используют белый свет, вычитая из него определенные цвета. Такие цвета называются субтрактивньми («вычитательными»), поскольку они остаются после вычитания основных аддитивных. Понятно, что в таком случае и основных суб-трактивных цветов будет три, тем более, что они уже упоминались: голубой, пурпурный, желтый.

Эти цвета составляют так называемую полиграфическую триаду. При печати красками этих цветов поглощаются красная, зеленая и синяя составляющие белого света таким образом, что большая часть видимого цветового спектра может быть репродуцирована на бумаге. Каждому пикселу в таком изображении присваиваются значения, определяющие процентное содержание триадных красок (хотя на самом деле все гораздо сложнее).

При смешениях двух субтрактивных составляющих результирующий цвет затемняется, а при смешении всех трех должен получиться черный цвет. При полном отсутствии краски остается белый цвет (белая бумага).

В итоге получается, что нулевые значения составляющих дают белый цвет, максимальные значения должны давать черный, их равные значения — оттенки серого, кроме того, имеются чистые субтрактивные цвета и их двойные сочетания. Это означает, что модель, в которой они описываются, похожа на модель RGB (рис. 4-8).


Рис. 4-8. Цветовая модель CMY представляется в виде трехмерного графика, у которого нулевая точка — белый цвет

Но проблема заключается в том, что данная модель призвана описывать реальные полиграфические краски, которые — увы — далеко не так идеальны, как цветной луч. Они имеют примеси, поэтому не могут полностью перекрыть весь цветовой диапазон, а это приводит, в частности, к тому, что смешение трех основных красок, которое должно давать черный цвет, дает какой-то неопределенный («грязный») темный цвет, и это скорее темно-коричневый, чем глубокий черный цвет.

Для компенсации этого недостатка в число основных полиграфических красок была внесена черная краска. Именно она добавила последнюю букву в название модели CMYK, хотя и не совсем обычно: С — это Cyan (Голубой), М — это Magenta (Пурпурный), Y — Yellow (Желтый), а (внимание!) К — это blacK (Черный), т. е. от слова взята не первая, а последняя буква.

Таким образом, модели RGB и CMYK, хотя и связаны друг с другом, однако их взаимные переходы друг в друга (конвертирование) не происходят без потерь, поскольку цветовой охват у них разный. И речь идет лишь о том, чтобы уменьшить потери до приемлемого уровня. Это вызывает необходимость очень сложных калибровок всех аппаратных частей, составляющих работу с цветом: сканера (он осуществляет ввод изображения), монитора (по нему судят о цвете и корректируют его параметры), выводного устройства (оно создает оригиналы для печати), печатного станка (выполняющего конечную стадию).

Цветовая модель HSB