Смекни!
smekni.com

Компьютерное моделирование сенситометрических характеристик формирователей сигналов изображения (стр. 2 из 6)

В плавном гетеропереходе заряда на неосновные носители заряда действует внутреннее электрическое поле εi, возникающее вследствие изменения Eg. При прямом смещении в этом случае также происходит односторонняя инжекция дырок в более узкозонную часть.

Фотоэффект.

Как и в p-n переходе фотоэффект в гетеропереходе возникает за счет пространственного разделения в поле объемного заряда носителей, возбужденных светом. При освещении полупроводника со стороны широкозонного полупроводника в узкозонном поглощаются фотоны с энергией:

Eg1<h υ<Eg2 (7)

где h - постоянная Планка

υ - частота излучения.

Широкозонный полупроводник служит в этом случае "окном", прозрачным для света, поглощаемого в узкозонном слое, и защищает область генерации неравновесных электронно-дырочных пар от рекомбинационных потерь на поверхности кристалла [2].

§ 2. Модели токопереноса в гетеропереходе CdS – Cu2S.

Система CdS-Сu2S представляет собой неидеальный анизотипный гетеропереход у которого различие постоянных кристаллических решеток контактирующих полупроводников CdS (5.832 Å) и Cu2S (5.601 Å) составляет 4%. Столь значительное различие периодов решеток при формировании гетероперехода создает высокую плотность дислокаций несоответствия на поверхности раздела. Оборванные связи в дислокациях приводят к появлению энергетических уровней в запрещенной зоне, ответственных за захват носителей или за их рекомбинацию и оказывают существенное влияние на перенос заряда через обедненную область [3,4].

Было предложено немало моделей, объясняющих процессы, протекающие в гетеропереходе. Вид зонной диаграммы и характер токопрохождения не могут быть описаны в рамках модели Андерсона, учитывающей только ток, текущий благодаря инжекции.

Для гетероперехода известно несколько вероятных механизмов протекания тока через область барьера, реализующихся в зависимости от внешних условий: электронный и дырочный токи при фотовозбуждении (1,2), термоэмиссионный (3), эмиссионно-рекомбинационный (4), туннельно-рекомбинационный ток (5,6) (См. рис.3) .

Рис.3. Вероятные механизмы токопереноса в области пространственного заряда гетероперехода CdS-Cu2S.

Для согласования теории с данными экспериментов, Бьюб предложил модель туннелирования электронов через "зубец" в зоне проводимости. Ширина "зубца", а следовательно и вклад туннельного тока в вольтамперную характеристику определялась глубокими уровнями дефектов в ОПЗ. Однако этот случай реализуется далеко не всегда.

Модель многоступенчатого туннелирования через эти состояния с последующей рекомбинацией на гетерограницах предложили Райбен и Фойхт для Ge-GaAs и Мартинуцци для CdS-Cu2S. При таком подходе, однако, невозможно точно определить вероятность туннельных переходов с одного уровня на другой и не учитывается ограничение туннельной проводимости скоростью рекомбинационных процессов на границе раздела.

В ряде публикаций [5,6,7,8] был предложен туннельно-прыжковый механизм токопереноса. Здесь учтены статистические распределения носителей и их взаимодействие с фононами. Определена также вероятность "прыжка" между соседними локальными состояниями.

Большое количество моделей, объясняющих процессы в гетеропереходах CdS-Cu2S, обусловлено различной технологией их получения, нестабильностью гетеропереходов в процессе работы, деградацией характеристик и другими причинами [3].

На рисунке 4 приведены типичные кривые спектрального распределения тока короткого замыкания гетеропереходов с различным химическим составом базового слоя. [3].

Рис.4. Спектральное распределение тока короткого замыкания тыльнобарьерных фотоэлементов с различным составом базового слоя:
1 - нелегированный CdS;
2 - CdS с примесью 0.01% In;
3 - CdZnS с примесью 0.2% In.

На рисунке 5 изображена детальная зонная диаграмма гетераперехода, построенная Дасом, который использовал теоретическую модель Ротворфа и другие модели. Значения всех параметров перехода, использованные в этой диаграмме, были определены экспериментально [4].

Рис.5. Энергетическая зонная диаграмма гетероперехода CdS-Cu2S.

Фотоэлектрические свойства гетероперехода CdS-Cu2S подробно рассмотрены ниже.

§ 3. Фотоэлектрические свойства гетероперехода CdS-Cu2S.

В основу формирователя сигналов изображения положено свойство неидеального гетероперехода CdS-Cu2S накапливать положительный заряд неравновесных дырок на локальных уровнях.

На зонной диаграмме (рис.6) изображены процессы, происходящие в ФСИ при освещении.

Резкое различие в проводимости сульфидов кадмия и меди приводит к тому, что область пространственного заряда локализована практически полностью со стороны CdS [4].

Рис.6. Зонная диаграмма ФСИ.

При фотовозбуждении квантами из области собственного поглощения сульфида кадмия появляются неравновесные электроны и дырки (переходы 1). Электроны удаляются полем барьера в объем базовой области, а дырки захватываются вблизи границы раздела на ловушки и центры рекомбинации (переходы 2). Наличие таких компенсирующих центров с большой концентрацией фактически является одним из основных свойств рассматриваемого гетероперехода. Поле барьера способствует накоплению дырок в ОПЗ, поэтому даже при незначительном уровне фотовозбуждения распределение положительного заряда в CdS значительно изменяется, что приводит к росту емкости перехода. Кроме того, распределение энергии электрона от координаты изменяется с квадратичного на экспоненциальное. При этом резко возрастает напряженность электрического поля у границы раздела гетероперехода [3].

Ток короткого замыкания Iкз формирователя изображения находится в прямой зависимости от пространственного распределения электрического потенциала φ(x), а это распределение непосредственно связано с концентрацией дырок, локализованных на ловушках.

Как показано в [3]:

(8)

где

- фототок в отсутствие потерь на границе раздела;

- подвижность электронов в CdS;

- скорость поверхностной рекомбинации на границе раздела.

Поскольку дрейфовая скорость электронов определяется из соотношения:

(9)

что равнозначно:

(10)

выражение (8) можно переписать:

(11)

Таким образом, изменяя освещенность гетероперехода с помощью собственной для сульфида кадмия подсветки можно управлять распределением φ(x), а, следовательно, и дрейфовой скоростью электронов и величиной тока короткого замыкания Iкз.

При проецировании на образец какого-либо изображения, его точки освещаются по разному, что приводит к различной концентрации дырок, захваченных на ловушки и соответственно к различному изгибу энергетических зон в ОПЗ.

Если проецирование прекратить, то различие в концентрации дырок сохраняется достаточно долгое время что позволяет использовать гетеропереход в качестве устройства, запоминающего оптическую информацию.

Считывание этой информации возможно при сканировании образца инфракрасным светом. Длительность ИК - импульсов при сканировании должна быть как порядка 10 мкс, так как более длинные импульсы будут вызывать активное оптическое опустошение ловушек, т.е. высвобождение дырок с локальных уровней в валентную зону (переход 6).

С помощью ИК - подсветки можно также производить стирание изображения, при этом образец освещают импульсами большой длительности с высокой частотой следования. После чего образец пригоден для повторного запоминания другого изображения.

Информация, полученная при сканировании образца, обрабатывается компьютерными методами и затем может воспроизводиться на экране компьютера. Процессы записи и считывания могут быть значительно разнесены во времени, однако длительное хранение сопровождается термическим опустошением ловушек, что приводит к постепенной утрате оптической информации.

При хранении образца при температуре около 0oС считывание информации возможно в течении 6-8 дней. Повышение температуры хранения приводит к более быстрому термическому высвобождению дырок в валентную зону.

Более подробно явления удаления захваченного заряда будут рассмотрены ниже.

§ 4. Механизмы выброса захваченного заряда в ОПЗ гетероперехода CdS-Cu2S.