Резкий спад чувствительности образца в коротковолновой области спектра обусловлен тем, что генерированные носители заряда рекомбинируют в объеме слоя сульфида кадмия, не успевая достигнуть области пространственного заряда, т.е. происходит поглощение света в поверхностном слое сульфида кадмия.
Спад чувствительности в длинноволновой области говорит об уменьшении коэффициента поглощения световых квантов в слое сульфида кадмия, а более плавный наклон кривой спектральной зависимости чувствительности ФСИ на основе гетероперехода CdS-Cu2S о наличии примесных центров в сульфиде кадмия, участвующих в процессах генерации носителей тока.
Для увеличения чувствительности следует либо уменьшить толщину базового слоя (что на практике приводит к резкому ухудшению свойств гетероперехода), либо создавать оптическое изображение со стороны тонкого слоя сульфида меди.
Таким образом, прибор может работать во всей области видимого спектра, хотя и с разной чувствительностью. Это позволяет получить три цветоотделенных изображения в основных цветах и тем самым сформировать цветной видеосигнал.
Так как в данном устройстве считывание изображения производится не электронным лучом, а ИК - светом, то для него не требуется вакуум и высокое напряжение, применяемые для формирования электронного луча. Максимальная разрешающая способность устройства определяется дифракционным пределом фокусировки светового пятна, при помощи которого происходит считывание изображения, и составляет приблизительно 1 мкм.
Спектральное распределение тока короткого замыкания позволяет охарактеризовать формирователь сигналов изображения на основе гетероперехода CdS-Cu2S как зеленочувствительный по общепринятой классификации для фотографических слоев. Следовательно, запись оптической информации наиболее эффективна при длинах волн около 520 нм.
Для исследования сенситометрических характеристик ФСИ была измерена и построена характеристическая кривая (рис.12). Аналогом оптической плотности Д в данном случае служил десятичный логарифм тока короткого замыкания, генерированного преобразователем.
Обычно для построения характеристической кривой фотографических слоев, их облучают серией возрастающих экспозиций и затем по данным измерения проявленных почернении строят зависимость D от Н.
Рис.12. Характеристические кривые ФСИ, измеренные при различных интенсивностях света и усредненная кривая. |
Для измерения характеристической кривой образца CdS-Cu2S был применен несколько другой способ, заключающийся в следующем. ФСИ непрерывно освещался светом с длиной волны l=520 нм. В процессе засветки в слое сульфида кадмия накапливаются неравновесные дырки, которые захватываются на некоторые локальные центры, что приводит к увеличению тока короткого замыкания. Возрастание Iкз со временем при определенной величине интенсивности света с l=520 нм, регистрировалось на экране осциллографа. При этом в качестве считывающего света использовался ИК - светодиод, работающий в импульсном режиме. Импульсы частотой 5 мс позволяли измерять изменение тока в образце без заметного эффекта стирания. При измерениях использовался закрытый вход осциллографа, что позволяло наблюдать реакцию ФСИ непосредственно на импульс без постоянной составляющей.
Для подтверждения применимости данного метода были измерены характеристические кривые при интенсивностях возбуждающего света: 0,05 лк, 0,1 лк, 0,5 лк. Как видно из рис.12, семейство кривых достаточно хорошо повторяет один и тот же профиль. Это говорит о том, что образец обладает свойством интегральности и по отношению к нему применимо понятие экспозиции. Из усредненной характеристической кривой (рис.12) были определены основные сенситометрические характеристики ФСИ на основе гетероперехода CdS-Cu2S. К ним относятся: коэффициент контрастности g, равный тангенсу угла наклона прямолинейного участка, который оказался равным g=0.55, фоточувствительность S, определяемая в единицах ГОСТа и оказавшаяся равной примерно 16 ед. ГОСТа.
§ 9. Моделирование и компьютерный расчет характеристических кривых.
Для определения числа фотонов, поглощенных в пределах ОПЗ и давших вклад в ток короткого замыкания, воспользуемся законом Бугера-Ламберта. Пусть L0-количество световых квантов попадающих на единицу поверхности слоя CdS в единицу времени; L1-доля квантов дошедших до начала ОПЗ; L2-доля квантов достигших металлургической границы:
(20) | |
(21) |
где k - коэффициент поглощения CdS;
d - толщина слоя CdS;
W0 - темновое значение протяженности ОПЗ.
Вклад в Iкз дадут поглощенные в ОПЗ фотоны:
(22) |
Определяя напряженность электрического поля на гетерогранице, воспользуемся тем, что она зависит лишь от суммарного заряда в приконтактной области. По теореме Остроградского-Гаусса:
(23) |
где e - диэлектрическая проницаемость CdS;
Nd - объемная плотность ионизированных доноров в CdS.
Поскольку фоточувствительность в системе ГОСТ определяется в области недодержек, вполне справедливым будет предположение о том, что за достаточно малое время t протяженность ОПЗ не успевает существенно измениться и остается приблизительно равным W0. Это облегчает определение зависимости напряженности электрического поля от времени при экспонировании:
(24) | |
(25) |
где b - квантовый выход.
В данном случае можно ввести понятие приведенной экспозиции:
(26) |
С учетом (26), напряженность электрического поля (25), на любом этапе экспонирования, перепишется следующим образом:
(27) |
В представленных экспериментальных данных фигурирует освещенность Е, выраженная в люксах. Следовательно, L0 можно записать следующим образом:
(28) |
где x- световая эффективность, используемая для перевода в систему единиц ГОСТ;
- энергия фотона длинноволновой подсветки.Учитывая все вышеизложенное, (8) запишется в виде:
(29) |
или в развернутом виде с учетом (26), (27) и (28):
(30) |
Выражение (30), просчитанное и представленное в координатах Lg(Iкз) от Lg(Et), является теоретической моделью характеристической кривой ФСИ на основе гетероперехода CdS-Cu2S. Расчет был произведен программой MathCAD, а полученная в результате кривая представлена на рисунке 13. Также для сравнения дана усредненная экспериментальная кривая, которая была уже представлена на рис.12.
Рис.13. Теоретическая и экспериментальная характеристические кривые. |
Совпадение расчетной кривой, с кривой полученной экспериментально, было достигнуто при следующих значениях:
Sf=1.6·106
; mn=1 ; e=10; d=1·10-3см; Nd=1·1015 ;Iкз0=1·10-6A; W0=105.131 нм.
Значение коэффициента k были взяты из [12].
По теоретической кривой также были рассчитаны сенситометрические характеристики и оказались равным: коэффициент контрастности g=0.53 и фоточувствительность S=15 ед. ГОСТа, что довольно близко к экспериментальным данным.
Преобразователь оптического изображения в электрические сигналы на основе гетероперехода СdS–Cu2S может быть использован для регистрации слабых оптических изображений с последующей записью их элементов в память ЭВМ с возможной коррекцией фоточувствительности. Так как в данном устройстве считывание изображения производится ИК - светом, то для него не требуется вакуум и высокое напряжение. Благодаря возможности изготовления преобразователя большой площади и его высокой чувствительности - вероятной областью применения такого устройства может быть регистрация изображений, создаваемых крупными телескопами при астрономических наблюдениях.