0,0/.1,.104/.2,.222/.3,.355/.4,.509/.5,.69/.6,.915
.7,1.2/.75,1.38/.8,1.6/.84,1.85/.88,2.12/.9,2.3
.92,2.52/.94,2.81/.95,2.99/.96,3.2/.97,3.5/.98,3.9
.99,4.6/.995,5.3/.998,6.2/.999,7/.9998,8
GENERATE 100,FN$EXP
GATE SNF STO2,WAIT
ENT1 ENTER STO2
ADVANCE 160,FN$EXP
LEAVE STO2
UNLINK BUFER,ENT1,1
TERMINATE 1
WAIT LINK BUFER,FIFO
START 10000
CLEAR
STO2 STORAGE 2
START 10000
CLEAR
STO2 STORAGE 3
START 10000
1.5
Рис. 20
Как правило, управляющие операторы не включаются в исходную программу, т.е. не имеют номеров строк, а вводятся пользователем непосредственно с клавиатуры ПК.
4. НЕКОТОРЫЕ ПРИЕМЫ КОНСТРУИРОВАНИЯ GPSS-МОДЕЛЕЙ
4.1. Косвенная адресация
В рассматривавшихся до сих пор примерах моделей ссылки на различные объекты GPSS/PC производились исключительно по данным им произвольным именам. Такая адресация объектов удобна, когда речь идет о небольшом числе объектов каждого типа. Если же число объектов некоторого типа велико, то во избежание пропорционального роста количества блоков в модели используют ссылки на эти объекты по их номерам с использованием так называемой косвенной адресации.
Идея косвенной адресации заключается в том, что каждый транзакт в некотором своем параметре содержит номер того или иного объекта, а в полях блоков, адресующихся к объектам, записывается ссылка на этот параметр транзакта. Проиллюстрируем применение косвенной адресации на примере следующей модели.
1
EXP FUNCTION RN1,C24
0,0/.1,.104/.2,.222/.3,.355/.4,.509/.5,.69/.6,.915
.7,1.2/.75,1.38/.8,1.6/.84,1.85/.88,2.12/.9,2.3
.92,2.52/.94,2.81/.95,2.99/.96,3.2/.97,3.5/.98,3.9
.99,4.6/.995,5.3/.998,6.2/.999,7/.9998,8
CLASS FUNCTION RN1,D3
.333,1/.667,2/1,3
MEAN FUNCTION P$TYPE,L3
1,70/2,80/3,90
PRIOT VARIABLE 4-P$TYPE
STO2 STORAGE 2
WTIME QTABLE LINE,50,50,10
TTIME TABLE M1,100,100,12
GENERATE 100,FN$EXP
ASSIGN TYPE,FN$CLASS
PRIORITY V$PRIOT
QUEUE LINE
QUEUE P$TYPE
ENTER STO2
DEPART P$TYPE
DEPART LINE
ADVANCE FN$MEAN,FN$EXP
LEAVE STO2
TABULATE TTIME
TERMINATE 1
1.5
Рис. 21
Пусть на вход моделируемой многоканальной СМО с двумя каналами обслуживания поступает пуассоновский поток заявок со средним интервалом поступления 100 единиц модельного времени. Каждая заявка с равной вероятностью 1/3 относится к одному из трех классов: 1, 2 или 3, а среднее время обслуживания заявок каждого типа составляет соответственно 70, 80 и 90 единиц модельного времени. Чем меньше среднее время обслуживания заявки, тем выше ее приоритет. Необходимо построить модель, позволяющую оценить средние значения времени ожидания заявок каждого типа, а также распределения общего времени ожидания в очереди и общего времени пребывания в системе. Такая модель имеет вид, показанный на рис. 21.
Переменная PRIOT служит для вычисления приоритета транзакта как функции его класса, содержащегося в параметре с именем TYPE. Транзакты класса 1 (P$TYPE=1) получат приоритет 3, транзакты класса 2 - приоритет 2 и транзакты класса 3 - приоритет 1.
В блоке ASSIGN в параметр TYPE транзактов записывается класс заявки, разыгрываемый с помощью функции CLASS. В следующем блоке PRIORITY с помощью переменной PRIOT определяется приоритет транзактов, первоначально равный 0 (отсутствует поле E в блоке GENERATE).
Далее каждый транзакт "отмечается" в блоках QUEUE в двух очередях. Очередь с именем LINE является общей для транзактов всех классов. Входя в следующий блок QUEUE, транзакт отмечается в очереди с номером 1, 2 или 3 в зависимости от класса заявки, записанного в параметре TYPE. Аналогичным образом фиксируется уход из очередей в блоках DEPART. Таким образом, в модели создается четыре объекта типа "очередь": одна очередь с именем LINE и три с номерами 1, 2 и 3. При этом три последние очереди создаются одной парой блоков QUEUE-DEPART! В этом и заключается эффект косвенной адресации.
Как уже отмечалось ранее, каждому имени объекта симулятор сам ставит в соответствие некоторый номер. При ссылках на объекты одного и того же типа одновременно по именам и номерам, как это имеет место в рассматриваемом примере, существует опасность параллельной адресации к одному и тому же объекту вместо двух разных или, наоборот, к двум разным объектам вместо одного. Так, в рассматриваемой модели мы, вообще говоря, не знаем, какой именно номер поставит симулятор в соответствие имени очереди LINE. Если этот номер будет от 1 до 3, то это приведет к ошибке, так как в модели окажется не четыре очереди, а три, причем в одну из них будет заноситься информация как обо всех транзактах, так и дополнительно о транзактах одного из трех классов. Как избежать такой ситуации?
К счастью, в большинстве случаев об этом можно не заботиться, поскольку симулятор ставит в соответствие именам объектов достаточно большие номера, начиная с 10000. При необходимости же можно воспользоваться оператором EQU, о котором уже говорилось выше, и самостоятельно сопоставить имени объекта желаемый номер. Например, в рассматриваемой модели для того, чтобы очередь с именем LINE имела номер 4, достаточно записать оператор:
LINE EQU 4
4.2. Обработка одновременных событий
Так как модельное время в GPSS целочисленно, то оказывается вполне вероятным одновременное наступление двух или более событий, причем вероятность этого тем больше, чем крупнее выбранная единица модельного времени. В некоторых случаях одновременное наступление нескольких событий, или так называемый временной узел, может существенно нарушить логику модели.
Рассмотрим, например, еще раз модель на рис. 14. Здесь может образоваться временной узел между событиями "поступление транзакта на вход модели" и "завершение обслуживания в МКУ". Если непосредственно перед завершением обслуживания были заняты оба канала МКУ, то обработка временного узла зависит от последовательности транзактов, соответствующих событиям, в списке текущих событий.
Предположим, что первым в списке расположен транзакт, освобождающий канал МКУ. Тогда вначале будет обработан этот транзакт, т.е. событие "завершение обслуживания в МКУ", причем условие "МКУ STO2 не заполнено", проверяемое в блоке GATE, станет истинным. Затем будет обработан транзакт, поступивший на вход модели, в блок GATE с именем ENT1, из блока GENERATE или из блока TRANSFER в безусловном режиме. При этом транзакт будет впущен в блок ENTER, и МКУ в тот же момент модельного времени снова окажется заполненным. Такая ситуация при обработке временного узла представляется естественной.
Предположим теперь, что первым в списке текущих событий расположен транзакт, поступающий на вход модели. Так как условие "МКУ STO2 не заполнено" ложно, то блок GATE направит этот транзакт в блок с именем REFUS. Таким образом, в модели будет зафиксирован отказ в обслуживании, хотя в этот же момент модельного времени, после обработки транзакта, освобождающего канал, МКУ станет доступным.
Порядок расположения транзактов, соответствующих рассматриваемым событиям, в списке текущих событий случаен, и в среднем в половине случаев временной узел будет обрабатываться не так, как нужно. В результате статистика, связанная с отказами, окажется искаженной.
Для правильной обработки временного узла надо обеспечить такой порядок расположения транзактов в списке текущих событий, чтобы транзакт, освобождающий МКУ, всегда располагался первым. Этого можно добиться, управляя приоритетами транзактов (рис. 22).
1
STO2 STORAGE 2
EXP FUNCTION RN1,C24
0,0/.1,.104/.2,.222/.3,.355/.4,.509/.5,.69/.6,.915
.7,1.2/.75,1.38/.8,1.6/.84,1.85/.88,2.12/.9,2.3
.92,2.52/.94,2.81/.95,2.99/.96,3.2/.97,3.5/.98,3.9
.99,4.6/.995,5.3/.998,6.2/.999,7/.9998,8
GENERATE 100,FN$EXP
ENT1 GATE SNF STO2,REFUS
ENTER STO2
PRIORITY 1
ADVANCE 160,FN$EXP
LEAVE STO2
TERMINATE 1
REFUS TRANSFER.1,,OUT
ADVANCE 250,FN$EXP
TRANSFER,ENT1
OUT TERMINATE 1
1.5
Рис. 22
Транзакты, поступающие в модель через блок GENERATE, имеют нулевой приоритет. Такой же приоритет имеют транзакты, получившие отказ в обслуживании, направленные в блок с именем REFUS и затем повторно поступающие в блок с именем ENT1. Те же транзакты, что поступают на обслуживание, повышают приоритет до 1 в блоке PRIORITY, и после выхода из блока ADVANCE возвращаются из списка будущих в список текущих событий, располагаясь в начале списка. Таким образом, нужный порядок транзактов обеспечивается, и временной узел будет обработан правильно.
Опасность неверной обработки временных узлов характерна для моделей со списками пользователя. Рассмотрим, например, еще раз модель на рис. 18. Здесь также возможен временной узел между событиями "приход транзакта" и "завершение обслуживания транзакта".
Пусть первым в списке текущих событий располагается вновь пришедший транзакт. Так как устройство с именем SYSTEM занято, то блок GATE направит этот транзакт в блок LINK, и он будет введен в список пользователя с именем LINE. Затем будет обработан транзакт, освобождающий устройство. Проходя через блок UNLINK, он выведет транзакт с начала списка пользователя и направит его в список текущих событий, где тот продвинется в блок SEIZE, занимая устройство SYSTEM.
Если же первым в списке текущих событий располагается транзакт, освобождающий устройство, то он выведет первый из ожидающих транзактов из списка пользователя в список текущих событий, где тот расположится после вновь пришедшего транзакта. Поэтому первым будет обработан вновь пришедший транзакт, который пройдет через блок GATE и займет устройство "без очереди". Транзакт-очередник, который был выведен из списка пользователя, "застрянет" перед блоком SEIZE и после очередного освобождения устройства займет его, нарушая, в свою очередь, логику работы модели.
Проведенный анализ показывает, что для правильной обработки временного узла необходимо обеспечить такой порядок расположения транзактов в списке текущих событий, чтобы первым всегда располагался вновь пришедший транзакт. В рассматриваемом случае этого можно добиться, используя блок PRIORITY с операндом BU (рис. 23).
Перед освобождением устройства обслуженный транзакт проходит через блок PRIORITY, который, оставляя неизменным приоритет транзакта PR, переводит его в конец списка текущих событий. При новом просмотре списка в случае наличия временного узла начинает обрабатываться вновь поступивший транзакт. Так как устройство еще занято, он направляется блоком GATE в список пользователя. При повторной обработке обслуженного транзакта тот освобождает устройство и выводит очередной транзакт из списка пользователя. Таким образом, правильная обработка временного узла обеспечивается и в этом случае.