Смекни!
smekni.com

Основы организации вычислительных систем (стр. 1 из 12)

Основы организации вычислительных систем

Процессоры

Архитектура системы команд. Классификация процессоров (CISC и RISC)

Термин "архитектура системы" часто употребляется как в узком, так и в широком смысле этого слова. В узком смысле под архитектурой понимается архитектура набора команд. Архитектура набора команд служит границей между аппаратурой и программным обеспечением и представляет ту часть системы, которая видна программисту или разработчику компиляторов. Следует отметить, что это наиболее частое употребление этого термина. В широком смысле архитектура охватывает понятие организации системы, включающее такие высокоуровневые аспекты разработки компьютера как систему памяти, структуру системной шины, организацию ввода/вывода и т.п.

Двумя основными архитектурами набора команд, используемыми компьютерной промышленностью на современном этапе развития вычислительной техники являются
архитектуры CISC и RISC. Основоположником CISC-архитектуры можно считать
компанию IBM с ее базовой архитектурой /360, ядро которой используется с 1964
года и дошло до наших дней, например, в таких современных мейнфреймах как IBM ES/9000.

Лидером в разработке микропроцессоров c полным набором команд (CISC - Complete Instruction Set Computer) считается компания Intel со своей серией x86 и Pentium. Эта архитектура является практическим стандартом для рынка микрокомпьютеров. Для CISC-процессоров характерно: сравнительно небольшое число регистров общего назначения; большое количество машинных команд, некоторые из которых нагружены семантически аналогично операторам высокоуровневых языков программирования и выполняются за много тактов; большое количество методов адресации; большое количество форматов команд различной разрядности; преобладание двухадресного формата команд; наличие команд обработки типа регистр-память.

Основой архитектуры современных рабочих станций и серверов является архитектура компьютера с сокращенным набором команд (RISC - Reduced Instruction Set Computer). Зачатки этой архитектуры уходят своими корнями к компьютерам CDC6600, разработчики которых (Торнтон, Крэй и др.) осознали важность упрощения набора команд для построения быстрых вычислительных машин. Эту традицию упрощения архитектуры С. Крэй с успехом применил при создании широко известной серии суперкомпьютеров компании Cray Research. Однако окончательно понятие RISC в современном его понимании сформировалось на базе трех исследовательских проектов компьютеров: процессора 801 компании IBM, процессора RISC университета Беркли и процессора MIPS Стенфордского университета.

Разработка экспериментального проекта компании IBM началась еще в конце 70-х годов, но его результаты никогда не публиковались и компьютер на его основе в промышленных масштабах не изготавливался. В 1980 году Д.Паттерсон со своими коллегами из Беркли начали свой проект и изготовили две машины, которые получили названия RISC-I и RISC-II. Главными идеями этих машин было отделение медленной памяти от высокоскоростных регистров и использование регистровых окон. В 1981 году Дж. Хеннесси со своими коллегами опубликовал описание стенфордской машины MIPS, основным аспектом разработки которой была эффективная реализация конвейерной обработки посредством тщательного планирования компилятором его загрузки.

Эти три машины имели много общего. Все они придерживались архитектуры, отделяющей команды обработки от команд работы с памятью, и делали упор на эффективную конвейерную обработку. Система команд разрабатывалась таким образом, чтобы выполнение любой команды занимало небольшое количество машинных тактов (предпочтительно один машинный такт). Сама логика выполнения команд с целью повышения производительности ориентировалась на аппаратную, а не на микропрограммную реализацию. Чтобы упростить логику декодирования команд использовались команды фиксированной длины и фиксированного формата.

Среди других особенностей RISC-архитектур следует отметить наличие достаточно большого регистрового файла (в типовых RISC-процессорах реализуются 32 или большее число регистров по сравнению с 8 - 16 регистрами в CISC-архитектурах), что позволяет большему объему данных храниться в регистрах на процессорном кристалле большее время и упрощает работу компилятора по распределению регистров под переменные. Для обработки, как правило, используются трехадресные команды, что помимо упрощения дешифрации дает возможность сохранять большее число переменных в регистрах без их последующей перезагрузки.

Ко времени завершения университетских проектов (1983-1984 гг.) обозначился также прорыв в технологии изготовления сверхбольших интегральных схем. Простота архитектуры и ее эффективность, подтвержденная этими проектами, вызвали большой интерес в компьютерной индустрии и с 1986 года началась активная промышленная реализация архитектуры RISC. К настоящему времени эта архитектура прочно занимает лидирующие позиции на мировом компьютерном рынке рабочих станций и серверов.

Развитие архитектуры RISC в значительной степени определялось прогрессом в области создания оптимизирующих компиляторов. Именно современная техника компиляции позволяет эффективно использовать преимущества большего регистрового файла, конвейерной организации и большей скорости выполнения команд. Современные компиляторы используют также преимущества другой оптимизационной техники для повышения производительности, обычно применяемой в процессорах RISC: реализацию задержанных переходов и суперскалярной обработки, позволяющей в один и тот же момент времени выдавать на выполнение несколько команд.

Следует отметить, что в последних разработках компании Intel (имеются в виду Pentium и Pentium Pro), а также ее последователей-конкурентов (AMD R5, Cyrix M1, NexGen Nx586 и др.) широко используются идеи, реализованные в RISC-микропроцессорах, так что многие различия между CISC и RISC стираются. Однако сложность архитектуры и системы команд x86 остается и является главным фактором, ограничивающим производительность процессоров на ее основе.

Конвейерная организация

Простейшая организация конвейера и оценка его производительности

Разработчики архитектуры компьютеров издавна прибегали к методам проектирования, известным под общим названием "совмещение операций", при котором аппаратура компьютера в любой момент времени выполняет одновременно более одной базовой операции. Этот общий метод включает два понятия: параллелизм и конвейеризацию. Хотя у них много общего и их зачастую трудно различать на практике, эти термины отражают два совершенно различных подхода. При параллелизме совмещение операций достигается путем воспроизведения в нескольких копиях аппаратной структуры. Высокая производительность достигается за счет одновременной работы всех элементов структур, осуществляющих решение различных частей задачи.

Конвейеризация (или конвейерная обработка) в общем случае основана на разделении подлежащей исполнению функции на более мелкие части, называемые ступенями, и выделении для каждой из них отдельного блока аппаратуры. Так обработку любой машинной команды можно разделить на несколько этапов (несколько ступеней), организовав передачу данных от одного этапа к следующему. При этом конвейерную обработку можно использовать для совмещения этапов выполнения разных команд. Производительность при этом возрастает благодаря тому, что одновременно на различных ступенях конвейера выполняются несколько команд. Конвейерная обработка такого рода широко применяется во всех современных быстродействующих процессорах.

Для иллюстрации основных принципов построения процессоров мы будем использовать простейшую архитектуру, содержащую 32 целочисленных регистра общего назначения (R0, ... ,R31), 32 регистра плавающей точки (F0,...,F31) и счетчик команд PC. Будем
считать, что набор команд нашего процессора включает типичные арифметические
и логические операции, операции с плавающей точкой, операции пересылки данных, операции управления потоком команд и системные операции. В арифметических
командах используется трехадресный формат, типичный для RISC-процессоров, а для обращения к памяти используются операции загрузки и записи содержимого регистров в память.

Выполнение типичной команды можно разделить на следующие этапы:

  • выборка команды - IF (по адресу, заданному счетчиком команд, из памяти извлекается команда);
  • декодирование команды / выборка операндов из регистров - ID;
  • выполнение операции / вычисление эффективного адреса памяти - EX;
  • обращение к памяти - MEM;
  • запоминание результата - WB.

На рисунке 3.1 представлена схема простейшего процессора, выполняющего указанные выше этапы выполнения команд без совмещения. Чтобы конвейеризовать эту схему, мы можем просто разбить выполнение команд на указанные выше этапы, отведя для выполнения каждого этапа один такт синхронизации, и начинать в каждом такте выполнение новой команды. Естественно, для хранения промежуточных результатов каждого этапа необходимо использовать регистровые станции. Хотя общее время выполнения одной команды в таком конвейере будет составлять пять тактов, в каждом такте аппаратура будет выполнять в совмещенном режиме пять различных команд.

Работу конвейера можно условно представить в виде временной диаграммы (рисунок 3.2), на которых обычно изображаются выполняемые команды, номера тактов и этапы выполнения команд.

Конвейеризация увеличивает пропускную способность процессора (количество команд, завершающихся в единицу времени), но она не сокращает время выполнения отдельной команды. В действительности, она даже несколько увеличивает время выполнения каждой команды из-за накладных расходов, связанных с управлением регистровыми станциями. Однако увеличение пропускной способности означает, что программа будет выполняться быстрее по сравнению с простой неконвейерной схемой.

Тот факт, что время выполнения каждой команды в конвейере не уменьшается, накладывает некоторые ограничения на практическую длину конвейера. Кроме ограничений, связанных с задержкой конвейера, имеются также ограничения, возникающие в результате несбалансированности задержки на каждой его ступени и из-за накладных расходов на конвейеризацию. Частота синхронизации не может быть выше, а, следовательно, такт синхронизации не может быть меньше, чем время, необходимое для работы наиболее медленной ступени конвейера. Накладные расходы на организацию конвейера возникают из-за задержки сигналов в конвейерных регистрах (защелках) и из-за перекосов сигналов синхронизации. Конвейерные регистры к длительности такта добавляют время установки и задержку распространения сигналов. В предельном случае длительность такта можно уменьшить до суммы накладных расходов и перекоса сигналов синхронизации, однако при этом в такте не останется времени для выполнения полезной работы по преобразованию информации.