Смекни!
smekni.com

Логические системы в различных функциональных наборах и их реализация (стр. 2 из 2)

Представим выбранные признаки в совершенной дизъюнктивной нормальной форме (СДНФ) и совершенной конъюнктивной нормальной форме (СКНФ). Для этого из таблицы истинности ФАЛ (см. табл. 2) выпишем конституэнты 0 и 1.

ФАЛ в СДНФ примет вид:

F1(X,Y,Z,P) = (X,Y,Z,P) Ú(X,Y,Z,P) Ú (X,Y,Z,P) Ú (X,Y,Z,P) Ú

(X,Y,Z,P) Ú (X,Y,Z,P) Ú (X,Y,Z,P) Ú (X,Y,Z,P) Ú (X,Y,Z,P) Ú (X,Y,Z,P)

F3(X,Y,Z,P) = (X,Y,Z,P) Ú (X,Y,Z,P) Ú (X,Y,Z,P) Ú (X,Y,Z,P) Ú

(X,Y,Z,P) Ú(X,Y,Z,P) Ú (X,Y,Z,P)

F5(X,Y,Z,P) = (X,Y,Z,P) Ú (X,Y,Z,P) Ú (X,Y,Z,P) Ú (X,Y,Z,P) Ú

(X,Y,Z,P) Ú (X,Y,Z,P) Ú (X,Y,Z,P) Ú (X,Y,Z,P) Ú (X,Y,Z,P)

ФАЛ в СКНФ примет вид:

F1(X,Y,Z,P) = (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y ÚZ Ú P) & (X Ú Y ÚZ Ú P)

F3(X,Y,Z,P) = (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P)

F5(X,Y,Z,P) = (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P)

2.6. Минимизация ФАЛ

Проведем минимизацию полученных ФАЛ при помощи карты Карно и представим их в ДНФ. Для этого попытаемся оптимальным образом объединить 0-кубы в кубы большей размерности. Клетки, образующие k-куб, дают минитерм n-k ранга, где n - число переменных, которые сохраняют одинаковое значение на этом k-кубе. Таким образом, получим ДНФ выбранных ФАЛ.

Рис 2.2а Рис 2.2б Рис 2.2в

Проведем минимизацию алгебраическим путем, воспользовавшись тождеством а È а = а.

XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZP = XYZ Ú XZP Ú XZP Ú YZP Ú XYZ Ú XZP = ZP Ú XYZ Ú XZP Ú YZP Ú XYZ

XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZPÚ XYZP Ú XYZP Ú XYZP Ú XYZP = YZP Ú YZP Ú XZP Ú XYZ Ú XYZ = XY Ú YZP Ú YZP Ú XZP

Ú XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZPÚ XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZP = XZP Ú XYP Ú XYZ Ú XZP Ú XZP Ú XYZP

2.7. Представление ФАЛ в виде куба

3. Исследование ФАЛ.

3.1. Матрица отношений.

Построить матрицу отношений T:H ´ A. Матрица отношений представляет собой таблицу, строками которой являются записи (кортежи признаков), а строками отношения, которые имеют все уникальные имена. Матрица отношения представлена в таблице 3.

Матрица отношений. Табл. 3

3.2. Исследование ФАЛ на толерантность.

Определим классы толерантности. Рассмотрим классы толерантности k1, k2, k3,имеющие общие элементы, следовательно, являющиеся пересекающимися множествами.

h1 = h(a1) = h(A) = { X0, X1, X3, X5, X6, X7, X9, X12, X13, X14 }

h2 = h(a2) = h(B) = { X1, X2, X8, X9, X10, X11, X12 }

h3 = h(a3) = h(C) = { X0, X3, X5, X6, X7, X9, X10, X13, X14 }

Проанализировав классы h1, h2, h3, можно получить: k1 Ç k2 = 0;

k1 Ç k3 = 0; k2 Ç k3 = 0, т.е. {k1, k2, k3 } - образуют класс толерантности

Результаты исследования занесем в таблицу 3.

3.3. Исследование ФАЛ на эквивалентность.

Определим классы эквивалентности для этого множества А = {Х0, Х1, ...., Х15 } разобьем на классы эквивалентности, получим 6 классов

М1 = {AC} = {X0,X3,X5,X6 X7,X13,X14}

М2 = {AB} = {X1,X12}

М3 = {B} = {X2,X8,X11}

М4 = { } = {X4,X15}

М5 = {ABC} = {X9}

М6 = {BC} = {X10}

При этом каждый класс полностью определяется любым его представителем. Сопоставив результаты исследования с результатами пункта 3.2 получим следующие зависимости

М1 Ì K1 М2 Ì K1 М3 Ì K2 М5 Ì K1 М6 Ì K2
М1 Ì K3 М2 Ì K2 М5 Ì K2 М6 Ì K3
М5 Ì K3

или

K1 = M1È M2È M5

K2 = M2È M3È M5È M6

K3 = M1È M5È M6

Результаты исследования занесены в таблицу 3. Результаты исследования на эквивалентность и толерантность необходимы для оптимизации построения логической схемы.

3.4. Матрица эквивалентности и толерантности.

Матрицу эквивалентности и толерантности можно представить в виде квадрата, по диагонали которого строятся классы эквивалентности, а затем устраиваются отношения толерантности. Матрица эквивалентности и толерантности представлена в таблице 4.

Матрица эквивалентности и толерантности. Таблица 4.

3.5. Диаграмма Эйлера.

Диаграмма Эйлера дает наглядное представление о том, как распределяются признаки по классам толерантности и эквивалентности. Диаграмма Эйлера для выбранных ФАЛ представлена на рисунке 3.5.

Диаграмма Эйлера. Рис. 3.5

3.6. Построение комбинационной схемы.

Комбинационная схема автомата распознавания набора признаков H = {h1, h3, h5 } построена на основе результатов исследований в пункте 3.1 и пункте 3.4.

Таблица 5

Используя таблицу 5, можно записать следующие отношения:

G1 = (XYZP) Ú (XYZP) Ú (XYZP) Ú (XYZP) Ú (XYZP) Ú (XYZP) Ú (XYZP) = (XYZP) Ú (XYZP) Ú (XYZP) Ú (XYZ) Ú (YZP)

G2 = (XYZP) Ú (XYZP)

G3 = (XYZP) Ú (XYZP) Ú (XYZP)

G4 = (XYZP) Ú (XYZP)

G5 = (XYZP)

G6 = (XYZP)

Тогда ФАЛ можно представить в виде:

F1 = G1Ú G2Ú G5

F3 = G2Ú G3Ú G5Ú G6

F5 = G1Ú G5Ú G6

Эти отношения эквивалентны ФАЛ в СДНФ, полученным в пункте 2.5.

Комбинационная схема строилась в два этапа:

1 этап: - построение комбинационной схемы на элементах и, или,

(нестандартных).

2 этап: - замена нестандартных элементов на стандартные и-не

Заключение

Проведя анализ на толерантность и эквивалентность, мы построили автомат, распознающий кортеж признаков H = {h1, h3, h5 }, который состоит из 16 - ти логических элементов.

Список литературы

1. В.П. Сигорский. «Математический аппарат инженера» - издательство Киев: Техника - 1975 г.