В те времена, когда я преподавал математику в школе (1990-1997), столкнулся с проблемой отсутствия достаточного количества дидактических материалов на печатной основе для проведения занятий. В частности, при проведении контрольных работ было лишь два варианта заданий, и, естественно, ученики списывали, что, с моей точки зрения, недопустимо. Тогда я стал придумывать варианты заданий и распечатывать их с помощью старенькой пишущей машинки. Сразу замечу, что занятие это рутинное, абсолютно не творческое и скучное — придумать 20-25 однотипных вариантов с разным содержанием. Тем не менее, один год я такое практиковал.
Когда в институте меня стали учить программированию, тут же возникла идея приспособить для создания дидактических материалов компьютер. Он для этих целей идеально подходил, поскольку позволял автоматизировать не только распечатку текста, но и сам процесс его разработки. Действительно, достаточно запрограммировать образец для одного задания, и согласно ему будет получено любое количество заданий. Но и здесь были свои проблемы, связанные с тем, что сгенерированный текст DOS приходилось затем "доводить до ума" (ставить верхние и нижние индексы, рисовать дроби и т.д.) с помощью текстового редактора типа ChiWriter или Lexicon, причем конечный продукт выглядел в результате достаточно нелепо и коряво.
Технология окончательно сформировалась в 1994 г., когда я познакомился с системой форматирования текстов LaTeX, позволяющей форматировать тексты, содержащие математические формулы любой сложности. Обычно в основу самостоятельной или контрольной работы закладываются уже существующие дидактические материалы к тому или иному школьному учебнику математики, и по этому образу и подобию готовится работа, где данные в каждом из вариантов различные. Таким образом складывается иллюзия наличия такого же количества вариантов, сколько учеников в классе.
Наличие отдельного напечатанного варианта при проведении контрольной или самостоятельной работы имеет ряд преимуществ перед отсутствием такового: во-первых, решается проблема списывания — каждый учащийся вынужден обрабатывать свои данные (правда, при этом можно в качестве образца использовать работу соседа, но это было и при традиционном проведении контрольной работы); во-вторых, нет необходимости перед началом урока втискивать текст контрольной работы на доску (очень не люблю писать на доске!); в-третьих, ни для кого не является секретом, что зрение большинства учащихся в настоящее время ослаблено, и им приходится подходить к доске или переспрашивать учителя для уточнения текста задания, при указанном подходе проблема снимается. Можно найти и другие достоинства, мною не отмеченные, я думаю... Есть и свои недостатки — учителю затем нужно проверить не 2 варианта, а 25-30. Не всякий при нынешней загруженности на это решится. Но при желании число существенно разных вариантов можно сократить до 5-10.
Продемонстрирую на паре-тройке примеров технологию подготовки текста в формате LaTeX.
Пример 1. Алгебраическое выражение.
Одно из наиболее часто встречающихся в 5-7 классах заданий — вычисление значения выражения. Генерируя такие выражения, нужно учитывать такие обстоятельства, как:
1) соответствие изучаемой теме и возрасту учащихся (например, в 5 классе значение выражения не должно быть равно отрицательному числу);
2) после выполнения очередного действия полученное значение должно получиться проще и приемлемым для выполнения следующего действия, где это значение используется (т.е. некоторые величины в выражении будут случайными, другие — вычисляемыми);
3) при записи десятичной дроби в школьной математике используется десятичная запятая, а при записи на компьютере — десятичная точка;
4) если в записи выражения используются десятичные дроби, то они должны быть несократимыми и правильными.
Учитывая приведенные выше соображения, покажем на примере следующего числового выражения получение его аналогов:
Проанализируем данное выражение. Его значение равно 2,32 и получается как разность двух произведений. Таким образом, значение выражения — произвольное рациональное число, модуль которого не больше 10. Значение первого и второго произведений — десятичные дроби, это соответственно 2,62 и 0,3. При генерации произведений будем ориентироваться также на десятичные значения. В первом произведении первый сомножитель — сумма обыкновенных дробей с разными знаменателями, НОД которых отличен от 1, а второй сомножитель — число, которое можно сократить с общим знаменателем первого сомножителя. Второе произведение — произведение обыкновенной и десятичной дроби, которые нужно подобрать так, чтобы результат был точной десятичной дробью.
Приступим к генерации выражения. Пусть A=НОД(B,C), где B, C — знаменатели дробей суммы. Тогда B=A*B1, C=A*C1, где B1, C1 — случайные числа. D, F — числители рассматриваемых дробей, причем D<B, F<C. Целую часть первого слагаемого можно сгенерировать случайным образом. Второй сомножитель в первом произведении получаем так: K=НОК(B,C)*R/100, 1<R<10 — случайное число.
Аналогично получаем второй сомножитель. Не нужно забывать о том, что значение выражения по абсолютной величине не должно превышать 10.
Таким образом, выражение может быть получено с помощью следующего фрагмента программы:
B1 := 1 + Random(9);
C1 := 1 + Random(9);
A := 2 + Random(4); {НОД знаменателей дробей суммы}
B := A * B1; {Знаменатель первой дроби}
C := A * C1; {Знаменатель второй дроби}
D := 1 + Random(B — 2); {Числитель первой дроби}
F := 1 + Random(C — 2); {Числитель второй дроби}
K := Nod(D, B); {НОД чисел D, B}
D := D Div K; {Сокращение первой дроби}
B := B Div K;
K := Nod(F, C); {НОДчисел F, C}
F := F Div K; {Сокращение второй дроби}
C := C Div K;
K := B * C Div Nod(B, C) * (1 + Random(7)); {Второй сомножитель
в первом произведении}
Repeat
Repeat
M := 3 + Random(6); {Одно из чисел, на которое будет
производиться сокращение во втором произведении}
Ch1 := M * (1 + Random(3)) {Числитель второй дроби}
Until Odd(M) and Odd(Ch1);
Zn := M * 5; {Знаменатель первого сомножителя во втором
произведении}
SS := 2 + Random(4);
Zn1 := Stepen(2, SS); {Знаменатель второго сомножителя -
случайная степень числа 2}
Ch := Zn1 Div 2; {Числитель первой дроби}
Until (Ch < Zn) And (Ch1 < Zn1); {Повторяем генерацию дробей,
пока числители не станут
меньше знаменателей}
S := Nod(Ch, Zn);
Ch := Ch Div S; {Сокращение дроби}
Zn := Zn Div S;
Ch1 := Ch1 * Stepen(10, SS); {Подготовка числителя
второй дроби к целочисленному
делению}
{Печать результата генерации в файл Name}
WriteLn(Ch1, ' ', Zn1);
Write(Name, '$$\left(', 1 + Random(3), '\frac{', D);
Write(Name, '}{', B, '}+\frac{', F, '}{', C, '}\right)\cdot');
Write(Name, K Div 100, '{,}', K Mod 100, '-\frac{', Ch);
WriteLn(Name, '}{', Zn, '}\cdot 0{,}', Ch1 Div Zn1, '.$$')
В фрагменте программы использованы функции пользователя: Nod(A, B) — НОД(A,B); Stepen(A,B) — AB. Указанные функции должны быть описаны в программе.
Результаты работы программы для количества заданий, равного 5:
$$\left(1\frac{2}{3}+\frac{5}{8}\right)\cdot0{,}48-\frac{4}{35}\cdot 0{,}875.$$
$$\left(3\frac{1}{2}+\frac{1}{7}\right)\cdot0{,}98-\frac{8}{35}\cdot
0{,}4375.$$
$$\left(2\frac{10}{27}+\frac{1}{18}\right)\cdot2{,}7-\frac{8}{25}\cdot
0{,}3125.$$
$$\left(2\frac{1}{2}+\frac{5}{6}\right)\cdot0{,}24-\frac{4}{15}\cdot 0{,}375.$$
$$\left(1\frac{5}{6}+\frac{3}{5}\right)\cdot1{,}5-\frac{4}{35}\cdot 0{,}875.$$
Результат обработки этого файла будет следующим:
Пример 2. Квадратное уравнение.
Настоящий пример несколько проще предыдущего. Рассмотрим два случая: а) корни уравнения — целые; б) корни уравнения — обыкновенные дроби.
Как и в предыдущем случае, целесообразно идти к получению задания от ответа. Сгенерируем два корня уравнения и, используя теорему Виета, получим его коэффициенты. При генерации целых корней разумно сделать их различными и отличными от нуля. В приведенном ниже примере это задания по буквами а, б. При выводе задания в файл требуется учесть, что коэффициенты могут быть равны нулю, а также тот факт, что коэффициент, равный единице, не записывается.
Задания под в, г предполагают наличие двух различных корней, являющихся обыкновенными правильными дробями. Алгоритм получения соответствующих коэффициентов в этом случае более громоздкий, хотя в основу положена всё та же теорема Виета. Изначально опять же генерируем ненулевые различные корни уравнения, а затем на их основе получаем уравнение в целыми коэффициентами. В примере это делается поэтапно: сначала — корни уравнения; затем — коэффициенты уравнения — обыкновенные дроби, наконец, коэффициенты — целые числа, причем НОК(A, B, C) = 1.
Ниже приводятся законченный фрагмент программы, генерирующий задания, пример работы этой программы и результат обработки файла, полученного с помощью программы.
Program Kw;
Var F : Text;
{Процедура, производящая начальные установки в формате LaTeXа}
Procedure UST;
Begin
WriteLn(F, '\documentstyle[12pt,a4wide]{article}');
WriteLn(F, '\topmargin-3cm');
WriteLn(F, '\pagestyle{empty}');
WriteLn(F, '\setlength{\textheight}{27cm}');
WriteLn(F, '\setlength{\textwidth}{16cm}');
WriteLn(F, '\begin{document}');
END;
{НОД}
Function Nod (X, Y : Integer) : Integer;
Begin
WHILE X <> Y Do
IF X > Y THEN X := X — Y ELSE Y := Y — X;
Nod := X
END;
{НОК}
Function NoK (X, Y : Integer) : Integer;
Begin
NoK := X * Y Div NoD(X, Y)
END;
Var X1, I, X2, A, C, B : Integer;
Ch, Ch1, Zn, Zn1, BCh, BZn, CCh, CZn, J, V, Vsp : Integer;
Begin
Assign(F, 't:\rustex\kw_ur.tex');
ReWrite(F);
UST;
Randomize;
{Корни уравнения (целые)}
Repeat X1 := -10 + Random(21) Until X1 <> 0;
Repeat X2 := -10 + Random(21) Until X2 <> 0;
B := -(X1 + X2);
C := X1 * X2;
WriteLn(F, '\begin{tabular}{ll}');
Write(F, 'а)~$x^2');
If B <> 0
Then Begin
If B > 0
Then If B <> 1 Then Write(F, '+', B) Else Write(F, '+')
Else If B <> -1 Then Write(F, B) Else Write(F, '-');
Write(F, 'x');
End;
If C <> 0 Then If C < 0 Then Write(F, C) Else Write(F, '+', C);
WriteLn(F, '=0$;& б)~$');
Repeat X1 := -10 + Random(21) Until X1 <> 0;
Repeat X2 := -10 + Random(21) Until (X2 <> 0) And (X2 <> X1);
B := -(X1 + X2);
C := X1 * X2;
Write(F, 'x^2');
If B <> 0
Then Begin
If B > 0
Then If B <> 1 Then Write(F, '+', B) Else Write(F, '+')
Else If B <> -1 Then Write(F, B) Else Write(F, '-');