Пояснительная записка: 42 с.,11 рис., 1 табл., 4 источника, 5 прил.
Целью работы над данным курсовым проектом является написание программного продукта для решения систем линейных уравнений. Метод Гаусса. Программный продукт должен выводить на экран теоретическую информацию по теме "Системы линейных алгебраических уравнений. Метод Гаусса", давать возможность решать системы линейных уравнений, а также предоставлять необходимый справочный материал по требованию пользователя.
Результаты работы может быть использованы на производстве, где допускается некоторая погрешность вычислений, а так же школьниками и студентами для сверки решаемых ими задач.
При выполнении данного ПП мною были получены навыки в решении систем линейных уравнений, а также в достаточном объеме изучен язык программирования Pascal 7.0.
РЕШЕНИЕ СИСТЕМ ЛИНЕЙНЫЙ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ, МЕТОД ГАУССА.
Содержание
Перечень обозначений, символов, единиц, сокращений и терминов
1.3 Актуальность разработки ПП
1.6 Схема информационных потоков
2. Решение систем линейных алгебраических уравнений методом гаусса
2.2 Метод Гаусса. Исключение неизвестных
5. Описание программной реализации
5.1 Функционально-логическая схема программы
5.2 Описание процедур и функций
5.3 Описание структур и форматов
6. Комплект поставки и порядок установки
Список использованных источников
Для того, чтобы выйти из программы в окне меню нужно нажать цифру "5". Приложение В
ПП - программный продукт
СЛАУ - система линейных алгебраических уравнений
В данном курсовом проекте был разработан программный продукт, предназначенный для решения систем линейных алгебраических уравнений методом Гаусса.
Решение систем уравнений, содержит четко сформулированный алгоритм для проведения вычислений.Одним из важнейших разделов математики является раздел, посвященный вычислениям систем линейных уравнений. И это не удивительно, т.к. вычисление систем линейных уравнений присутствует во всех сферах человеческой деятельности.
Весьма существенным преимуществом такого программного продукта является способность предотвращать ошибки человеческого фактора, которые могут возникнуть при вводе информации. Это обусловливается тем, что программа осуществляет проверку на наличие таких ошибок. Если же такие ошибки возникли, то на экран будет выведено предупреждение о неправильном вводе, и пользователю будет предоставлена возможность повторить ввод.
Кроме того, метод в электронном виде достаточно компактен, не имеет больших системных требований, а также рассчитан на широкую аудиторию пользователей.
Целью создания программного продукта является автоматизация процесса решения систем уравнений.
Наличие удобного в использовании графического интерфейса позволяет выбрать одну из предложенных разработчиком функцию для решения систем уравнений и построения графиков. Кроме того, ПП снабжён справочной системой, позволяющей легко получить доступ к интересующей пользователя информации о работе программы, а также теоретическому материалу на тему " Системы линейных алгебраических уравнений методом Гаусса".
Использование данного ПП возможно в сфере образования в виде вспомогательной программы для школьников и студентов при изучении метода Гаусса, для автоматизации в решении СЛАУ, а также для самоконтроля.
Человек все чаще прибегает к использованию компьютера для того, чтобы в короткие сроки, и с максимальной эффективностью решать поставленные задачи. Эта программа может выявлять ошибки, к тому же, она в своих расчетах не содержит долю человеческого фактора, что тем самым приводит к более точным расчетам. В работе такие системы способны функционировать без вмешательства человека, осуществлять расчеты самостоятельно, только нуждаясь во вводе информации пользователем.
Входными данными программы являются введенные с клавиатуры и из файла коэффициенты матрицы, а также вывод информации из файлов. Когда пользователь открывает ПП, на середину экрана выводится меню из текстового файла “menu. txt”. При выборе пункта "Теория" на экран выводится теоретический материал из файлов: “Text1. txt", “Text2. txt”, “Text3. txt", “Text4. txt”, “Text5. txt", “Text6. txt”. При выборе пункта "Пример" на экран выводятся примеры решения СЛАУ методом Гаусса из файлов “Primer1. txt”, “Primer2. txt”, “Primer3. txt”, “Primer4. txt”. При выборе пункта "Справка" на экран выводится справочный материал по программному продукту из файла “SPRAVKA1. txt".
Выходными данными являются приведенная к ступенчатому виду матрица, корни СЛАУ и конечный результат, выведенный на экран и записанный в файл “Оtvet. txt".
Вся программа представляет собой одно целое "тело", куда входят пять блоков: блок отображения теоретической информации, блок отображения примеров решения СЛАУ, блок ввода исходных данных, блок вычислений, блок вывода результатов и блок отображения справочной информации. Данные, хранящиеся на диске в блоке отображения теоретической информации, - это файлы теоретической информации, а данные выводимые на экран в этом блоке, - это справочная информация. Данные, хранящиеся на диске в блоке отображения примеров СЛАУ, - это файлы примеров решения СЛАУ, а данные выводимые на экран в этом блоке, - это справочная информация. Данными, вводимыми с клавиатуры в блок ввода исходных данных, являются ввод матрицы коэффициентов, а данные выводимые на экран в этом блоке, - это сообщения об ошибке и подсказки при вводе. В блоке вывода результатов на экран выводятся корни решенной СЛАУ. Графическое решение.
Данные, хранящиеся на диске в блоке отображения справочной информации, - это файлы справочной информации, а данные выводимые на экран, - это справочная информация. На рисунке 2.1 пользователь может проследить все вышеописанное.
Рисунок 1.1 - Схема информационных потоков для вычисления СЛАУ методом Гаусса
Система линейных алгебраических уравнений (СЛАУ) из m уравнений с n неизвестными х1,..., хn - это система уравнений вида
a11x1+a12x2+... +a1nxn=b1a21x1+a22x2+... +a2nxn=b2
. ………... ... ... ... ... ... ... ... ..., (2.1)
am1x1+am2x2+... +amnxn=bm
где числа aij (i=1,m; j=1,n) называется коэффициентами СЛАУ, а bi - свободными членами СЛАУ, причем (aij,bi) Є R.
Индекс i обозначает номер уравнения, а индекс j - номер неизвестного.
Система алгебраических уравнений называется линейной, если все уравнения системы содержат неизвестные только первой степени, и они между собой не перемножаются.
СЛАУ называется квадратной, если в ней число уравнений равно числу неизвестных, то есть m=n.
СЛАУ называется однородной, если все ее свободные члены равна нулю, то есть bi=0.
СЛАУ называется неоднородной, если среди ее свободных членов хотя бы один не равен нулю, то есть bi ≠0.
Решение СЛАУ (2.1) называется такая совокупность значений неизвестных x1=C1,...,xn=Cn, которая каждое уравнение СЛАУ обращает в верное числовое равенство (тождество).
СЛАУ называется совместным, если она имеет хотя бы одно решения, и не совместных, если она вообще не имеет решений.
Совместная СЛАУ называется определенной, если она имеет единственное решение, и не определенной, если она имеет более одного решения.
Неопределенная СЛАУ всегда имеет бесконечное множество решений. Тогда каждое ее решение называется частным решением СЛАУ, а множество всех частных решений называется общим решением СЛАУ.
СЛАУ называется эквивалентными, если они имеют одно и тоже множество решений.
Элементарными (тождественными) преобразованиями СЛАУ являются:
1) перестановка уравнений,
2) умножение любого уравнения на число ʎ ≠ 0,3) прибавление одного уравнения к другому.
При элементарных преобразованиях получают только эквивалентные СЛАУ.