Смекни!
smekni.com

Автоматизация технологических процессов и производств (стр. 3 из 10)

В статистическом смысле общим показателем готовности может служить доля систем, готовых для использования в течение требуе­мого рабочего интервала времени.

В общем виде готовность системы определяется через вероят­ность отказа Q и невосстанавливаемость Qв по следующей фор­муле:

Рг = 1 – Qв Q (1.4)

Уравнение (1.4) показывает, что готовность системы при фик­сированной одной характеристике безотказности или восстанавли­ваемости может быть повышена за счет увеличения другой. В част­ности, при низкой безотказности системы готовность может быть увеличена соответствующим увеличением восстанавливаемости. Если восстановление систем не производится, то, как следует из уравнения (1.4), готовность определяется безотказностью системы.

Рекомендуемая литература для дополнительного чтения:

1. Балакирев В.С., Бадеников В.Я. Надежность технических и программных средств автоматизации. Учеб. пособие для ВУЗов. – Ангарск.: Ангарский технологический институт, 1994, - 64 с.

2. Ястребенецкий М.А., Иванова Г.М. Надежность АСУТП. Учеб. пособие для ВУЗов. – М.: Энергоатомиздат, 1989. – 264 с.

3. Олссон Г. Цифровые системы автоматизации и управления. – М.:

4. Курочкин Ю.А. Надежность и диагностирование цифровых устройств и систем. – М.: Энергоатомиздат, 1993. – 230 с.

Лекция 2

ПОКАЗАТЕЛИ НАДЕЖНОСТИ СИСТЕМ

Анализ надежности автоматических систем и ее состав­ляющих может быть разделен на две задачи: статическую и дина­мическую. Надежность системы (при заданной схеме и конструкции) в основном зависит от двух параметров:

- требуемого времени безотказной работы,

- условий эксплуатации системы.

Когда эти параметры фиксируются, то рассматривается стати­ческая задача, которая базируется на основных положениях теории вероятностей.

При статическом подходе надежность характеризуется числом подобно тому, как динамические звенья автоматической системы в установившемся режиме характеризуются коэффициентом пере­дачи. Указанная аналогия позволит пользоваться при анализе надежности системы ее структурными представлениями, что на­ряду с наглядностью упрощает также составление уравнений надежности и их анализ.

Когда требуемое значение интервала времени безотказной работы или условия эксплуатации системы не фик­сируются при анализе надежности, возникает динамическая за­дача. Основным математическим аппаратом при решении дина­мической задачи наряду с классической теорией вероятностей является теория случайных процессов. Основные зависимости и уравнения динамической задачи становятся более сложными, чем в статической задаче, поэтому решать ее удобно с помощью преобразований Лапласа, Меллина, z-преобразования.

Применение для решения динамических задач теории надеж­ности указанных преобразований позволяет, так же как и в стати­ческой задаче, пользоваться структурными методами. Обычно с решением динамической зада­чи связывается надежность восстанавливаемых систем.

Динамическая задача дает возможность также разработать критерии надежности систем или ее отдельных составляющих. Учитывая, что надежность системы является вероятностной харак­теристикой, для разработки критериев можно использовать функ­ции распределения вероятностей в зависимости от рассматривае­мого динамического параметра или моменты функций распределе­ния вероятностей.

Функции распределения вероятностей представляют наиболее полную информацию о надежности системы. При этом в зависи­мости от целей исследования, особенностей рассматриваемой системы могут применяться интегральные, дифференциальные или условные функции распределения вероятностей.

Показателями надежности называются количественные характеристики одного или нескольких свойств, составляющих надежность системы. Выбор тех или иных показателей продиктован видом исследуемой системы. В теории надежности различают восстанавливаемые и невосстанавливаемые системы. К невосстанавливаемым относят системы, восстановление которых непосредственно после отказа считается нецелесообразным или невозможным, а к восстанавливаемым – в которых проводится восстановление непосредственно после отказа.

Для невосстанавливаемых систем, как правило, ограничиваются показателями безотказности. Эти же показатели описывают системы, в принципе подлежащие восстановлению после отказов, но поведение которых целесообразно рассматривать до момента первого отказа. К их числу, например, можно отнести системы, чьи отказы чрезвычайно редки и вызывают особо тяжелые последствия.

К показателям надежности невосстанавливаемых систем относятся:

1. Интегральный закон распределения времени безотказной работы;

2. Интегральный закон распределения времени до отказа;

3. Дифференциальный закон распределения времени исправной работы устройства до первого отказа;

4. Среднее время безотказной работы (средняя наработка до отказа);

5. Интенсивность отказов.

Прежде чем перейти к показателям надежности, необходимо ввести понятие наработки до отказа.

Наработка до отказа(Т)случайная величина, представляющая собой длительность работы невосстанавливаемой системы до наступления отказа. Для большей части систем наработка до отказа измеряется единицами времени, но она может измеряться и числом включений, срабатываний, циклов. Очевидно, что для систем, работающих без отключений (кроме отказов), наработка до отказа совпадает с временем безотказной работы.

Основным показателем для количественной оценки безотказности элемента, аппаратуры, приборов и АСУ является вероятность безотказной работы P(t) в заданном интервале времени наработки t. Например, Р (1000) =0,99 означает, что из множества элементов данного вида 1% откажет раньше 1000 ч, или что для одного элемента его шансы проработать безотказно 1000 ч составляют 99%. Чем меньше наработка, тем больше P(t). Показатель P(t) полностью определяет безотказность невосстанавливаемых элементов, но применим также и к восстанавливаемым элементам до первого отказа. Вероятность безотказной работы статистически определяется отношением числа элементов ni, безотказно проработавших до момента времени t, к числу элементов Nработоспособ­ных в начальный момент времени t = 0

Pi*=ni/ N. (2.1)

При значительном увеличении числа элементов N статистиче­ская вероятность Pi* сходится к вероятности

Р (t)=P{T.>t} (2.2)

где T— наработка до отказа.

Так как исправная работа и отказ — события противоположные, то они связаны очевидным соотношением:

Q(t)=l - P(t) (2.3)

где Q(t) —вероятность отказа, или интегральный закон распреде­ления случайной величины времени работы до отказа.

Статистическое значение вероятности отказа равно отношению числа отказавших элементов к начальному числу испытываемых элементов:

Qi*=1-ni/N= (N-ni)/N (2.4)

Производная от вероятности отказа f(t)=dQ(t)/dt=dP(t)/dtесть дифференциальный закон, или плотность распределения слу­чайной величины времени исправной работы устройства до пер­вого отказа и характеризует скорость снижения вероятности без­отказной работы во времени.

Среднее время безотказной работы Тср представляет собой ма­тематическое ожидание времени работы устройства до отказа

(2.5)

Статистическая формула для расчета Тср:

(2.6)

где Ti— время безотказной работы I-го устройства; N – общее число элементов.

Интенсивностью отказов l(t) называют отношение плотности распределения времени исправной работы к вероятности безотказ­ной работы невосстанавливаемого устройства, которая взята для одного и того же момента времени t. .

l(t)=f(t)/P(t)=-dP/d(t!/P(t). (2.7)

Статистическая формула:

l(t)*=2(N1-N2)/t(N1+N2) (2.8)

где N1— начальное количество исправных элементов; N2 — количество исправных устройств через время t.

Интенсивность отказов является наиболее удобной характеристикой безотказности систем и эле­ментов. Как показывает опыт обработки статистических данных по эксплуатации различного оборудования, интенсивность отказов автоматических систем, а также отдельных элементов не может быть аппроксимирована аналитической зависимостью, соответ­ствующей только одному теоретическому закону безотказности.

Обработка большого количества информации об отказах автоматических систем позволила получить общую качественную форму зависимости интенсивности отказов от времени (рис. 2.1).

На кривой, приведенной на рис.2.1 можно выделить три ха­рактерные области:

1) начальных отказов П (область приработки);2) случайных отказов С (область зрелости); 3) отказов вследствие старения И (область стрости).

В области П интенсивность отказов сначала возрастает, дости­гает максимального значения и затем уменьшается.

Рис. 2.1 Зависимость интенсивности отказов от времени.

Верхняя граница области определяется переходом интенсивности отказов зону постоянных значений. Начальные отказы могут быть обусловлены дефектами материалов, а также главным образом производственными дефектами и некоторыми другими факторами. Причины начальных отказов можно устранить опытной эксплуатацией системы, тренировкой в специальных условиях и режимах работы в течение периода времени, называемого периодом приработки. Продолжительность периода приработки, как показывает опыт, зависит от числа дефектов в системе.