Рис. 1.3. Змішана топологія
1.1.2 Організація сумісного використання ліній зв'язку
Тільки у мережі з повнозв'язною топологією для з'єднання кожної пари комп'ютерів є окрема лінія зв'язку. У решті всіх випадків неминуче виникає питання про те, як організувати сумісне використання ліній зв'язку декількома комп'ютерами мережі. Як і завжди при розділенні ресурсів, головною метою тут є здешевлення мережі.
У обчислювальних мережах використовують як індивідуальні лінії зв'язку між комп'ютерами, так і що розділяються (shared), коли одна лінія зв'язку поперемінно використовується декількома комп'ютерами. У разі застосування ліній зв'язку (часто використовується також термін середовище передачі даних, що розділяється, - shared media), що розділяються, виникає комплекс проблем, пов'язаних з їх сумісним використанням, який включає як чисто електричні проблеми забезпечення потрібної якості сигналів при підключенні до одного і тому ж дроту декількох приймачів і передавачів, так і логічні проблеми розділення в часі доступу до цих ліній.
Класичним прикладом мережі з лініями зв'язку, що розділяються, є мережі з топологією «загальна шина», в яких один кабель спільно використовується всіма комп'ютерами мережі. Жоден з комп'ютерів мережі в принципі не може індивідуально, незалежно від всіх інших комп'ютерів мережі, використовувати кабель, оскільки при одночасній передачі даних відразу декількома вузлами сигнали змішуються і спотворюються. У топологиях «кільце» або «зірка» індивідуальне використання ліній зв'язку, що сполучають комп'ютери, принципово можливо, але ці кабелі часто також розглядають як мережі, що розділяються для всіх комп'ютерів, так що, наприклад, тільки один комп'ютер кільця має право в даний момент часу відправляти по кільцю пакети іншим комп'ютерам.
Існують різні способи рішення задачі організації сумісного доступу до ліній зв'язку, що розділяються. Усередині комп'ютера проблеми розділення ліній зв'язку між різними модулями також існують - прикладом є доступ до системної шини, яким управляє або процесор, або спеціальний арбітр шини. У мережах організація сумісного доступу до ліній зв'язку має свою специфіку із-за істотно більшого часу розповсюдження сигналів по довгих проводах, до того ж це час для різних пар комп'ютерів може бути різним. Через це процедури узгодження доступу до лінії зв'язку можуть займати дуже великий проміжок часу і приводити до значних втрат продуктивності мережі.
Не дивлячись на всі ці складнощі, в локальних мережах лінії зв'язку, що розділяються, використовуються дуже часто. Цей підхід, зокрема, реалізований в широко поширених класичних технологіях Ethernet і Token Ring. Проте останніми роками намітилася тенденція відмови від середовищ передачі даних, що розділялися, і в локальних мережах. Це пов'язано з тим, що за здешевлення мережі, що досягається таким чином, доводиться розплачуватися продуктивністю.
Мережа з середовищем, що розділяється, при великій кількості вузлів працюватиме завжди повільніше, ніж аналогічна мережа з індивідуальними лініями зв'язку, оскільки пропускна спроможність індивідуальної лінії зв'язку дістається одному комп'ютеру, а при її сумісному використанні - ділиться на всі комп'ютери мережі.
Часто з такою втратою продуктивності миряться ради збільшення економічної ефективності мережі. Не тільки у класичних, але і в зовсім нових технологіях, розроблених для локальних мереж, зберігається режим ліній зв'язку, що розділяються. Наприклад, розробники технології Gigabit Ethernet, прийнятої в 1998 році як новий стандарт, включили режим розділення передавального середовища в свої специфікації разом з режимом роботи по індивідуальних лініях зв'язку.
При використанні індивідуальних ліній зв'язку в повнозв'язних топологиях кінцеві вузли повинні мати по одному порту на кожну лінію зв'язку. У зіркоподібних топологиях кінцеві вузли можуть підключатися індивідуальними лініями зв'язку до спеціального пристрою - комутатора. У глобальних мережах комутатори використовувалися вже на початковому етапі, а в локальних мережах - з початку 90-х років. Комутатори приводять до істотного дорожчання локальної мережі, тому поки їх застосування обмежене, але у міру зниження вартості комутації цей підхід, можливо, витіснить застосування ліній зв'язку, що розділяються. Необхідно підкреслити, що індивідуальними в таких мережах є тільки лінії зв'язку між кінцевими вузлами і комутаторами мережі, а зв'язки між комутаторами залишаються такими, що розділяються, оскільки по ним передаються повідомлення різних кінцевих вузлів (рис. 1.4).
Рис. 1.4. Індивідуальні лінії зв'язку, що розділяються, в мережах на основі комутаторів
У глобальних мережах відмова від ліній, що розділяються, зв'язку пояснюється технічними причинами. Тут великі тимчасові затримки розповсюдження сигналів принципово обмежують застосовність техніки розділення лінії зв'язку. Комп'ютери можуть витратити більше часу на переговори про той, кому зараз можна використовувати лінію зв'язку, чим безпосередньо на передачу даних по цій лінії зв'язку. Проте це не відноситься до ліній зв'язку типу «комутатор - комутатор». В цьому випадку тільки два комутатори борються за доступ до лінії зв'язку, і це істотно спрощує завдання організації сумісного використання лінії.
1.2 Структуризація каналів як засіб побудови великих мереж
У мережах з невеликою (10-30) кількістю комп'ютерів найчастіше використовується одна з типових топологий - загальна шина, кільце, зірка або повнозв'язна мережа. Всі перераховані топології володіють властивістю однорідності, тобто всі комп'ютери в такій мережі мають однакові має рацію відносно доступу до інших комп'ютерів (за винятком центрального комп'ютера при з'єднанні зірка). Така однорідність структури робить простий процедуру нарощування числа комп'ютерів, полегшує обслуговування і експлуатацію мережі.
Проте при побудові великих мереж однорідна структура зв'язків перетворюється з переваги в недолік. У таких мережах використання типових структур породжує різні обмеження, найважливішими з яких є:
· обмеження на довжину зв'язку між вузлами;
· обмеження на кількість вузлів в мережі;
· обмеження на інтенсивність трафіку, що породжується вузлами мережі.
Наприклад, технологія Ethernet на тонкому коаксіальному кабелі дозволяє використовувати кабель завдовжки не більше 185 метрів, до якого можна підключити не більше 30 комп'ютерів. Проте, якщо комп'ютери інтенсивно обмінюються інформацією між собою, іноді доводиться знижувати число підключених до кабелю комп'ютерів 20, а то і до 10, щоб кожному комп'ютеру діставалася прийнятна частка загальної пропускної спроможності мережі.
Для зняття цих обмежень використовуються спеціальні методи структуризації мережі і спеціальне структуротворне устаткування - повторители, концентратори, мости, комутатори, маршрутизатори. Устаткування такого роду також називають комунікаційним, маючи на увазі, що за допомогою його окремі сегменти мережі взаємодіють між собою.
1.2.1 Фізична структуризація мережі
Просте з комунікаційних пристроїв - повторитель (repeater) - використовується для фізичного з'єднання різних сегментів кабелю локальної мережі з метою збільшення загальної довжини мережі. Повторітель передає сигнали, що приходять з одного сегменту мережі, в інших її сегменти (рис. 1.5). Повторітель дозволяє подолати обмеження на довжину ліній зв'язку за рахунок поліпшення якості передаваного сигналу - відновлення його потужності і амплітуди, поліпшення фронтів і тому подібне
Рис. 1.5. Повторитель дозволяє збільшити довжину мережі Ethernet
Концентратори характерні практично для всіх базових технологій локальних мереж - Ethernet, ArcNet, Token Ring, FDDI, Fast Ethernet, Gigabit Ethernet, l00VG-AnyLAN.
Потрібно підкреслити, що в роботі концентраторів будь-яких технологій багато загального - вони повторюють сигнали, що прийшли з одного зі своїх портів, на інших своїх портах. Різниця полягає в тому, на яких саме портах повторюються вхідні сигнали. Так, концентратор Ethernet повторює вхідні сигнали на всіх своїх портах, крім того, з якого сигнали поступають (рис. 1.6, а). А концентратор Token Ring (рис. 1.6, б) повторює вхідні сигнали, що поступають з деякого порту, тільки на одному порту - на тому, до якого підключений наступний в кільці комп'ютер.
Рис. 1.6. Концентратори різних технологій
Нагадаємо, що під фізичною топологією розуміється конфігурація зв'язків, утворених окремими частинами кабелю, а під логічною - конфігурація інформаційних потоків між комп'ютерами мережі. У багатьох випадках фізична і логічна топології мережі збігаються. Наприклад, мережа, представлена на рис. 1.7, а, має фізичну топологію кільце. Комп'ютери цієї мережі дістають доступ до кабелів кільця за рахунок передачі один одному спеціального кадру - маркера, причому цей маркер також передається послідовно від комп'ютера до комп'ютера в тому ж порядку, в якому комп'ютери утворюють фізичне кільце, тобто комп'ютер А передає маркер комп'ютеру В, комп'ютер В - комп'ютеру С и т. д.
Мережа, показана на рис. 1.7, б, демонструє приклад неспівпадання фізичної і логічної топології. Фізично комп'ютери сполучені по топології загальна шина. Доступ же до шини відбувається не по алгоритму випадкового доступу, вживаному в технології Ethernet, а шляхом передачі маркера в кільцевому порядку: від комп'ютера А - комп'ютеру В, від комп'ютера В - комп'ютеру С и т. д. Тут порядок передачі маркера вже не повторює фізичні зв'язки, а визначається логічною конфігурацією драйверів мережевих адаптерів. Ніщо не заважає набудувати мережеві адаптери і їх драйвери так, щоб комп'ютери утворили кільце в іншому порядку, наприклад: У, А, С... При цьому фізична структура мережі ніяк не змінюється.