Смекни!
smekni.com

Автоматизированное проектирование железобетонных конструкций стержневых систем (стр. 4 из 5)


– эпюра My в 2-м загружении недеформированной схемы:

Полученные результаты были вставлены в отчет выполненной работы с помощью ДОКУМЕНТАТОРА.

2.3 Плоская рама

2.3.1 Понятие плоской рамы как стержневой системы

РАМА (от польск. Rama и нем. Rahmen) – плоская или пространственная, геометрически неизменяемая стержневая система, элементы которой (стойки и ригели) во всех или некоторых узлах жёстко соединены между собой. Применяют в качестве несущих конструкций в зданиях, инженерных сооружениях (мосты, путепроводы, эстакады и др.), в авиационных и судостроительных конструкциях и т.д., являются несущими частями машин (например, вагонная рама).

Рама – это балка с ломанной осью, горизонтальные ее стержни – это ригель, вертикальные стрежни – стойки рамы. Ригель и стойка соединены между собой твердым узлом, который создает непрерывную в систему. На раму могут действовать крановые и надкрановые нагрузки.

2.3.2 Постановка задачи для расчета напряженно-деформированного состояния (НДС) плоской рамы

Постановка задачи и исходные данные:

1) рассчитать и проанализировать напряженно-деформированное состояние рамы ( рис. 2.3).

Арочная ферма состоит из труб, внешний диаметр которой D = 12 мм и внутренний диаметр d=10 мм.

Рис. 2.3 Рама

Рама имеет П-образный пролет в 12м и два симметричных горизонтальных элемента по 6 м, надкрановую и подкрановую части соответственно высотой по 4 м.

Профиль стрежней колонн имеет прямоугольную форму – Брус – размерами h=60 см, b=40 см, сечение ригелей – тавр с размерами B=10 см, H=80 см, B1=30 см, H1=12 см.

Механические характеристики: модуль Юнга Е= 3e6 тс/м2; плотность материала Ro=2.75 тс/м3.

Нагрузка на конструкцию (рис.2.3):

а) постоянные местные нагрузки F1=50 кН, F2=55 кН, F3=135 кН (1 загружение);

б) постоянные равномерно распределенные нагрузки q1=10 кН/м, q2=12 кН/м, q3=15 кН/м (2-е загружение).

2) Вывести эпюры продольных, поперечных сил и сгибающих моментов в каждом загружении.

2.3.3 Алгоритм вычисления НДС плоской рамы

Для создания файла необходимо в меню ФАЙЛ выбрать команду НОВЫЙ и в диалоговом окне, которое откроется, «ПРИЗНАК СХЕМЫ» ввести такие данные:

имя файла РАМА;

признак схемы 2 (Три степени свободы в узле – два перемещения и поворот в плоскости X0Z).

Для создания геометрии схемы необходимо войти в меню СХЕМА/СОЗДАНИЕ/РЕГУЛЯРНЫЕ ФРАГМЕНТЫ И СЕТИ (пиктограмма

).

В соответствующих окнах диалоговой панели «Создание плоских фрагментов и сетей» указываются следующие значения:

Шаг вдоль 1-и (горизонтальной) оси шаг вдоль 2-и (вертикальной) оси
Значение Количество Значение Количество
L(м) N L(м) N
6 1 4 1
12 1 4 1
6 1

Введение соответствующих значений для генерации рамы закончить нажатием кнопки «Применить».

Рис. 2.4 Общая схема созданной рамы

 Для того, чтобы задать закрепление в узлах необходимо:

– выделить узел 2 (рис. 2.4);

– назначить связи в этом узле по направлениям X, Z инажатькнопку «Применить»;

– выделить узлы 1, 6 и 9, назначить связи по Z и щелкнуть по кнопке «Применить».

Все узлы, которым предназначенные связи, имеют синий цвет.

 Для того, чтобы добавить шарнир в центре вертикальной балки необходимо: выделить элемент 4, где будет расположен шарнир; избрать меню ЖЕСТКОСТИ/ШАРНИРЫ; установить в окне ШАРНИРЫ переключатель для второго узла в направлении UY.

 Для выбора необходимых жесткостей элементов необходимо:

– войти в меню ЖЕСТКОСТИ/ЖЕСТКОСТИ ЭЛЕМЕНТОВ (пиктограмма

) и сформировать список типов жесткости, для чего

указать на кнопку "Добавить";

– в диалоговом окне «Жесткости элементов» выбрать сечения элементов:

а) для вертикальных элементов – Брус (бетон).

В диалоговой панели указываются следующие параметры: модуль упругости – E = 3е6 тс/м2, геометрические размеры сечения – В = 60 см, Н = 40 см, объемный вес Ro= 2.75 тс/м3.

Для дальнейшего использования разработанного сечения необходимо нажать кнопку «Подтвердить».

б) для горизонтальных элементов - Тавр (бетон). В соответствующей диалоговой панели указываются следующие параметры: модуль упругости – E = 3е6 тс/м2, геометрические размеры сечения – В = 10 см, Н = 80 см, В1 = 30 см, Н1 = 12 см, объемный вес – Ro=2.75 тс/м3.

Для подтверждения введения необходимо нажать кнопку «Подтвердить», перейти в следующее окно и нажать на кнопки «Подтвердить» и "Закончить". При этом откроется диалоговое окно, в котором находится следующий список сечений:

«Брус 40x60»,

«Тавр_Т 10х80»;

– не закрывая диалоговое окно «Жесткости элементов», отметить на схеме соответствующие элементы, и нажать кнопку «Назначить».

 Следующим этапом будет назначение нагрузок.

Рассмотрим задачу нагрузок в 2-х загружениях.

1 загружение:

– выделить элемент 3 (пиктограмма

). Задать сосредоточенную силу Р=-5т, а=2м и указать систему координат «Глобальная», направление – вдоль оси Х ;

– выделить элемент 4. Задать сосредоточенную силу Р=13.5т, а=3м и указать систему координат «Глобальная», направление – вдоль оси Z;

– выделить элемент 6. Задать сосредоточенную силу Р=5.5т, а=2м и указать систему координат «Глобальная», направление – вдоль оси Х.

2 загружение:

– выделить элемент 1. Задать равномерно распределенную нагрузку q2 = 1.2 т/м и указать систему координат «Глобальная», направление – вдоль оси Z;

– выделить элементы 4 и 5. Задать равномерно распределенную нагрузку q1=1 т/м и указать систему координат «Глобальная», направление – вдоль оси Z;

– выделить элемент 7. Задать равномерно распределенную нагрузку q3=1.5 т/м и указать систему координат «Глобальная», направление – вдоль оси Х.

 Формирование таблицы расчетных соединений усилий (РСУ):

– в меню НАГРУЗКА выбрать команду РСУ, а потом - пункт Генерация таблицы РСУ;

– выбрать вид загрузки для 1-го загружения (пункт кратковремееное в имеющемся списке);

указать на кнопку «Подтвердить» (после этого введенные данные отобразятся отдельной строкой в сведенной информационной таблице РСУ и автоматически переключится номер загрузки на 2-и);

– выбрать вид загрузки для второй загрузки (пункт временное длительное в имеющемся списке);

указать на кнопку «Подтвердить» (после этого введенные данные отобразятся отдельной строкой в информационной таблице РСУ);

указать на кнопку "Закончить".

Для выполнения расчета необходимо выбрать команду РЕЖИМ/ВЫПОЛНИТЬ РАСЧЕТ (пиктограмма

). После выполнения расчета ЛИР-ВИЗОР остается в режиме формирования расчетной схемы конструкции.

2.3.4 Визуализация результатов расчета

Для отображения на экране результатов расчета графически:

– войдем в меню РЕЖИМ/РЕЗУЛЬТАТЫ РАСЧЕТА;

– выведем на экран эпюры нагрузок в разных загружениях на деформированной или на недеформированной схеме (команда УСИЛИЯ/ЭПЮРЫ);

– для наглядности произведенных системой расчетов выведем на экран сравнительную схему для «Загружения 1» зайдя в меню СХЕМА/Исходная+деформированная.

Получаем схему следующего вида:

– выведем на экран эпюры N в 1-м загружении недеформированной схемы (команда УСИЛИЯ/ЭПЮРЫ/ЭПЮРЫ ПРОДОЛЬНЫХ СИЛ). Получаем схему следующего вида:

– выведем на экран эпюры Qz в 1-м загружении недеформированной схемы (команда УСИЛИЯ/ЭПЮРЫ/ЭПЮРЫ ПОПЕРЕЧНЫХ СИЛ или пиктограмма

). Получаем схему следующего вида:


– выведем на экран эпюры My в 1-м загружении недеформированной схемы (команда УСИЛИЯ/ЭПЮРЫ/ЭПЮРЫ ИЗГИБАЮЩИХ МОМЕНТОВ). Получаем схему следующего вида:

Аналогично выводятся эпюры для 2-го загружения:

– эпюра N во 2-м загружении недеформированной схемы:

– эпюра Qz во 2-м загружении недеформированной схемы:


– эпюра My в 2-м загружении недеформированной схемы:

Полученные результаты были вставлены в отчет выполненной работы с помощью ДОКУМЕНТАТОРА.

Выводы

В данной работе были рассмотрены несколько примеров расчета напряженно-деформированного состояния заданных конструкций. Примеры, содержащие основные виды систем и нагрузок, предоставили возможность детально ознакомиться на практике с основными возможностями рассматриваемой программы, что позволит в дальнейшем самостоятельно решать поставленные задачи при помощи ЛИР-ВИЗОР.