Курсовая работа
Тема: «Автоматические системы управления»
Введение.................................................................................................... 2
1.История развития...................................................................................... 3
2.Основные понятия....................................................................................10
2.1. Фундаментальные принципы управления...................................... 11
2.2. Принцип разомкнутого управления................................................ 15
2.3. Принцип управления по отключению............................................ 15
2.4. Принцип регулирования по отключению...................................... 16
3.Основние виды алгоритмов функционирования.................................. 18
3.1. Поиск экстремума показателя качества......................................... 18
3.2. Принцип оптимального управления............................................... 19
3.3. Принцип адаптации.......................................................................... 19
4.Классификация систем автоматического управления......................... 20
4.1. Системы автоматической стабилизации........................................ 21
4.2. Основные элементы систем автоматического регулирования..... 22
4.3. Статическое и астатическое регулирования................................... 24
4.4. САУ непрерывного, релейного действия........................................ 25
4.5. Регулирование по возмущению........................................................ 25
Заключение................................................................................................... 27
Список литературы...................................................................................... 29
В основных направлениях экономического и социального развития становится задача развивать производство электронных устройств регулирования и телемеханики, исполнительных механизмов, приборов и датчиков систем комплексной автоматизации сложных технологических процессов, агрегатов, машин и оборудования.
Опыт, накопленный при создании автоматизированных и автоматических систем управления, показывает, что управление различными процессами основывается на ряде правил и законов, часть из которых оказывается общей для технических устройств, живых организмов и общественных явлений. Изучение процессов управления, получения, преобразования информации в технических, живых и общественных системах составляет предмет кибернетики, важным разделом который является техническая кибернетика, включая анализ информационных процессов управления техническими объектами, синтез алгоритмов управления и создание систем управления, реализующих эти алгоритмы.
Техническая кибернетика призвана решать задачи теоретического анализа и развития методов технического конструирования элементной базы систем управления. Выделение этого раздела технической кибернетики в самостоятельную научную дисциплину «Элементы систем автоматического управления и контроля» явилось следствием накопления большого объёма материала, посвященного исследованиям различных устройств автоматики и его систематизации, которая впервые в нашей стране проведена
чл.-кор. АН СССР Б.С.Сотсковым.
1. История развития
Теория автоматического регулирования и управления относится к числу научных дисциплин, образующих в совокупности науку об управлении. В начале она создавалась с целью изучения закономерностей в процессах автоматического управления техническими процессами - производственными, энергетическими, транспортными и т.п. . В настоящее время основное значение теория автоматического регулирования и управления имеет для изучения технических процессов, хотя в последние годы её выводами и результатами начинают пользоваться для изучения динамических свойств систем управления не только технического характера.
Для осуществления автоматического управления создаётся система, состоящая из управляющего объекта и тесно связанного с ним управляющего устройства. Как и всякое техническое сооружение, систему управления стремятся создать как бы конструктивно жёсткой, динамически «прочной». Эти чисто механические термины довольно условны и употреблены здесь в том смысле, что система должна быть способна выполнять предписанную ей программу действий, несмотря на неизбежные помехи со стороны внешней среды.
Впервые, по-видимому, с необходимостью построения регуляторов столкнулись создатели высокоточных механизмов, в первую очередь - часов. Даже небольшие, всё время действующие в них помехи приводили в конечном итоге к отклонениям от нормального хода, недопустимым по условиям точности. Противодействовать этим помехам чисто конструктивными средствами, например, улучшая обработку деталей, повышая их массу или увеличивая развиваемыми устройствами полезные усилия, не удавалось, и для решения проблемы точности в состав системы стали вводить регуляторы. На рубеже нашей эры арабы снабдили поплавковым регулятором уровня водяные часы. Гюйгенс в 1657 году встроил в часы маятниковый регулятор хода.
Ещё одной причиной, побуждавшей строить регуляторы, была необходимость управлять процессами, протекавшими при наличии столь сильно изменяющихся помех, в первую очередь нагрузки, что при этом утрачивалась не только точность, но и работоспособность системы. Предвозвестниками регуляторов для подобных условий можно считать применявшиеся ещё в средние века регуляторы хода водяных мукомольных мельниц с центробежными маятниковыми элементами. Хотя отдельные автоматические регуляторы появлялись данные времена, они оставались любопытными для истории техники эпизодами и сколь-нибудь серьёзного влияния на формирование техники и теории автоматического регулирования не оказали. Развитие промышленных регуляторов началось лишь на рубеже XVIII и XIX столетий, в эпоху промышленного переворота в Европе. Первыми промышленными регуляторами этого периода являются автоматический поплавковый регулятор питания котла паровой машины, построенный в 1765 г.
И.И.Ползуновым, и центробежный регулятор скорости паровой машины, на который в 1784 г. Получил потент Дж. Уатт. Эти регуляторы как бы открыли путь потоку предложений по принципам регулирования и изобретений регуляторов, продолжавшемуся на протяжении XIX в. В этот период появились регуляторы с воздействием по скорости (Сименса), по нагрузке (Понселе), сервомоторы с жёсткой обратной связью (Фарко), регуляторы с гибкой обратной связью (изодромные), импульсные регуляторы «на отсечку пара», вибрационные электрические регуляторы и т.п.
Паровая машина не случайно стала первым объектом для промышленных регуляторов, так как она не обладала способностью устойчиво работать сама по себе, т.е. не обладала «самовыравниванием». Её неприятные динамические особенности часто приводили к неприятным неожиданностям, когда подключённый к машине регулятор действовал не так, как ожидал конструктор: «раскачивал» машину или вообще оказывался неспособным управлять ею. Всё это, естественно, побуждало к проведению теоретических исследований . Публикация этих исследований начинается с 30-х годов (первая известная публикация Д.С.Чижова. была в 1823 году). Однако до конца 60-годов теоретические исследования регуляторов отличаются тем, что сегодня называется «отсутствием системного подхода». Часть авторов ещё не видит, что в технике возникло принципиально новое направление; они считают, что регуляторы - лишь некоторая разновидность, приборное исполнение «модераторов», «уравнителей хода», классическим представителем которых были насаживаемые на вал машины маховики. В некоторых из этих работ считается, что регулятор действует идеально, не обладая собственной инерцией. Шагом вперёд были работы, учитывавшие динамику регулятора, но и в них регулятор рассматривался отдельно от машины. Авторы добивались хорошего «успокоения» колебаний самого регулятора, считая, что это достаточно и для успокоения колебаний машины. При таком подходе теоретические исследования не могли стать фундаментом новой науки и были лишь дополнительными проработками в рамках прикладной механики, придатком к её разделу о паровых машинах.
Коренное изменение в подходе к проблеме и в методологию исследования внесли три фундаментальные теоретические работы, содержавшие в себе, по существу, изложение основ новой науки: работа Д.К.Максвелла
«О регуляторах» (1866) и работы И.А.Вышнеградского «Об общей теории регуляторов» (1876) и «О регуляторах прямого действия» (1877). Д.К.Максвелл и И.А.Вышнеградский осуществили системный подход к проблеме, рассмотрев регулятор и машину как единую динамическую систему. Они смело упростили задачу, перейдя к исследованию малых колебаний и линеаризовав сложные дифференциальные уравнения системы, что позволило дать общий методологический подход к исследованию самых разнородных по физике и конструкции систем, заложить основы теории устойчивости, особенно актуальной для того времени, и установить ряд важных общих закономерностей регулирования по принципу обратной связи.
Исключительно важную роль в то время сыграла работа И.А.Вышнеградского, отличавшаяся глубоким инженерным подходом, рассмотрением самых злободневных для техники тех лет объектов и содержавшая кроме ценных практических рекомендаций также истоки ряда современных методов исследования устойчивости и качества регулирования (диаграммы устойчивости и распределения корней, выделение областей устойчивости и монотонности и др.). именно И.А.Вышнеградский является основоположником теории автоматического регулирования.
Глубокая работа Д.К.Максвелла осталась в то время малозамеченной, т.к. она рассматривала нехарактерный объект, явно полезных практических выводов не делала и даже по умозрительным выводам рекомендовала практически непригодные для машин того времени астатические регулятора. Её роль была оценена позднее, когда теория автоматического регулирования уже сформировалась в самостоятельную научную дисциплину.
Уже в те годы теория регулирования стала стимулировать разработки математического плана. По призыву Д.К.Максвелла Раус разработал алгоритм для оценки расположения корней характеристического уравнения и устойчивости. По просьбе А.Стодолы вывел детерминантный критерий устойчивости Гурвиц.