Решить графоаналитическим методом.
maxj (X) = - 2x1 + x2 + 5x3
при 4x1 + 2x2 + 5x3³ 12
6x1 - 3x2 + 4x3 = 18
3x1 + 3x2 - 2x3£ 16
Х ≥ 0
Здесь число n = 3 и число m = 3.
Выразим из ограничений и х3:
≥ 0Подставим его в целевую функцию
maxj (X) =
Получим новые ограничения:
х ≥ 0
Получили задачу линейного программирования в основном виде для n = 2
Вычисляем градиент
: = =(X*,λ*)N | X1* | X2* | λ* | φ (X*) | Примечание |
1 | 2 | 4,5826 | 1 | -24,25 | Min |
2 | 2 | -4,5826 | 1 | -24,25 | Min |
Решить обобщенным методом множителей Лагранжа или на основе условий Куна-Таккера.
extr φ (X) = 9 (x1 - 5) 2 + 4 (x2 - 6) 2 =
при 3x1 + 2x2 >= 12
x1 - x2 <= 6
Решим задачу на основе условий Куна-Таккера.
Составим функцию Лагранжа.
L (X,λ) =
+ λ1 (3x1 + 2x2 - 12) + λ2 (x1 - x2 - 6) =Составим систему уравнений из частных производных и приравняем их нулю.
Решим систему уравнений.
1) Предположим, что λ2 ≠ 0, тогда из уравнения (d) получим
x2 = х1 - 6
Пусть λ1 = 0 и x1 ≠ 0, тогда из уравнения (а) получим
18x1 - 90 - λ2 = 0, λ2 = 18х1 - 90
Пусть x2 ≠ 0, тогда из уравнения (b) получим
8x2 - 48 - λ2 = 0
Подставив в уравнение выражения для x2 и λ2, получим
x1 = 4
x2 = - 2
x1* = 4; x2* = - 2; φ (Х) * = 265
Трехмерный график целевой функции для данной задачи
Двухмерная проекция
X*N | X1* | X2* | φ (X*) | Примечание |
1 | 5 | 6 | 0 | Min |
2 | 4 | -2 | 265 | Max |
Получить выражение вектор-функции и матрицы Якоби системы и составить алгоритм численного решения задачи на основе условий Куна-Таккера.
maxφ (X) = - x12 - x22 +2х2
при x1 + x2 >= 18
x1 + 2 x2 >= 14
Х>=0
Найдем выражение вектор-функции системы.
Составим функцию Лагранжа.
L (X,λ) = - x12 - x22 + 2х2 + λ1 (x1 + x2 - 18) + λ2 (x1 + 2x2 - 14)
Вектор-функция системы:
Составим матрицу Якоби.
Составим алгоритм численного решения задачи:
Рисунок 5.