Смекни!
smekni.com

Анализ и моделирование цифровых и аналоговых схем (стр. 2 из 2)

Задание: выполнить анализ заданной схемы по методам Зейделя для заданного изменения вектора входных переменных.

Исходные данные:

Схема:

Заданный вариант изменения вектора входных переменных:

X=(a,b,c,d,e) меняет свое значение с 00100 на 11101

Математическая модель заданной схемы имеет вид:


При реализации анализа по методу Зейделя при вычислении очередного из элементов вектора Yi в правую часть уравнений системы там, где это возможно, подставляются не элементы вектора Yi-1, а те элементы вектора Yi, которые уже вычислены к данному моменту, т.е. итерации выполняются по формуле: Yi=y (Yi,Yi-1, X).

Результат вычислений по методу Зейделя без ранжирования, для исходного произвольного порядка уравнений модели представлен в таблице 5. Для организации вычислений использовалось значение начального приближения вектора выходных переменных Y0, полученное в задаче 2.

Таблица 5

итерации

Начальное приближение Y0
g p f h q
0 1 1 1 1

1

2

0

0

1

1

0

0

1

1

1

1

Задача №4. Моделирование аналоговых схем (метод узловых потенциалов)

Цель: освоение метода узловых потенциалов моделирования аналоговых схем.

Задание: для заданного варианта схемы задачи №6 разработать модель топологии с использованием метода узловых потенциалов: построить матрицу «узел-ветвь», записать топологические уравнения в общем виде; в развернутой матричной форме; в виде системы уравнений по законам Кирхгофа.

Решение:

В методе узловых потенциалов в вектор базисных координат включаются потенциалы всех узлов схемы, за исключением одного узла, принимаемого за опорный. Топологические уравнения – это уравнения закона токов Кирхгофа, записанные для узлов схемы, и уравнения связи вектора напряжений ветвей U с вектором узловых потенциалов:

A×I=0;

ATj+U=0,

где А – матрица «узел-ветвь»; AT - транспонированная матрица «узел-ветвь»; I – вектор токов ветвей. Строки матрицы соответствуют узлам, а столбцы - ветвям схемы. В столбце i-той ветви записываются единицы на пересечении со строками узлов, при чем +1 соответствует узлу, в который ток i-той ветви втекает, а -1 соответствует узлу, из которого этот ток вытекает. Матрица «узел-ветвь» для схемы с введенными обозначениями узлов, полученной в задаче 6 и показанной на рисунке 10, имеет вид, представленный на рисунке 14 (узел 8 принят в качестве опорного).

С1 С2 С3 С4 С5 С6 R1 R2 R3 R4 R5 E1
1 0 0 0 0 0 0 -1 0 0 0 0 +1
2 -1 -1 0 0 0 0 +1 0 0 0 0 0
3 0 +1 0 0 0 0 0 -1 -1 0 0 0
4 0 0 -1 0 0 0 0 +1 0 0 0 0
5 0 0 0 -1 0 0 0 0 +1 -1 0 0
6 0 0 0 0 -1 0 0 0 0 +1 0 0
7 0 0 0 +1 +1 -1 0 0 0 0 -1 0

Рисунок 14

Запишем топологические уравнения по закону токов Кирхгофа

- в общем виде:

A×I=0;

- в развернутой матричной форм

- в виде системы уравнений, которая получена из матричной формы умножением вектора-столбца токов ветвей схемы на матрицу «узел-ветвь»:

Запишем топологические уравнения по закону напряжений через узловые потенциалы:

- в общем виде:

ATj+U=0;

- в развернутой матричной форме (в транспонированной матрице столбцы соответствуют строкам исходной матрицы «узел-ветвь»):

- в виде системы уравнений, которая получена из матричной формы умножением вектора-столбца узловых потенциалов на матрицу «узел-ветвь» после приведения ее к виду U=-ATj:

Таким образом, модель топологии заданной схемы получена с использованием метода узловых потенциалов в виде двух систем уравнений - по закону токов Кирхгофа и по закону напряжений через узловые потенциалы.

Задача №5. Моделирование аналоговых схем (метод переменных состояния)

Цель: освоение метода узловых потенциалов моделирования аналоговых схем.

Теория, методы и примеры решения: раздел 3.3.2.3 курса лекций.

Задание: для заданного варианта схемы задачи №6 разработать модель топологии с использованием метода переменных состояния: построить граф, нормальное фундаментальное дерево и матрицу контуров и сечений. Записать топологические уравнения в общем виде; в развернутой матричной форме; в виде системы уравнений по законам Кирхгофа. Записать окончательную математическую модель схемы в виде системы уравнений, в которой ёмкостные токи и индуктивные напряжения выражены явно и заменены производными переменных состояния.

Решение:

Базисными координатами в этом методе являются переменные состояния, т.е. фазовые переменные, непосредственно характеризующие запасы энергии в элементах электрической схемы. К таким переменным относятся независимые друг от друга емкостные напряжения и индуктивные токи. Исходными топологическими уравнениями являются те же уравнения, что и в табличном методе:

Ux+MUвд=0; Iвд=MТIx=0.

Матрицу М контуров и сечений в методе переменных состояния формируют на основе построения нормального дерева графа схемы. Нормальным деревом называют фундаментальное дерево, в которое включение ветвей производится не произвольно, а в следующем порядке: ветви источников напряжения, емкостные, резистивные, индуктивные, источников тока. Использование нормального дерева облегчает дальнейшее преобразование исходных уравнений с целью получения нормальной формы Коши.

В графе схемы, приведенной на рисунке 12, построенное фундаментальное дерево является нормальным. Топологические уравнения в общем виде и в развернутой матричной форме были получены при решении задачи 6. Топологические уравнения в виде системы уравнений по законам Кирхгофа, полученные с использованием матрицы контуров и сечений, построенной в задаче №6, имеют вид:

Для получения окончательной ММС используют компонентные уравнения. При их преобразовании стремятся получить уравнения, выражающие емкостные токи IС и индуктивные напряжения UL через переменные состояния. Далее, заменяя IC и UL производными переменных состояния, получают окончательную ММС.

Запишем компонентные уравнения (уравнения сопротивления, емкости и индуктивности) в общем виде:

В заданной схеме нет индуктивных ветвей, поэтому уравнение индуктивности нам не понадобится.

В левых частях уравнений второй системы необходимо заменить ICjна Сj×dUCj/dt, а в правые части вместо IRiподставить величины URi, выраженные из уравнений первой системы путем деления на Ri. Окончательная форма ММС по методу переменных состояния имеет вид:

Таким образом, с использованием метода переменных состояния получена окончательная полная ММС заданной схемы, объединяющая в себе компонентные и топологические уравнения схемы.