• криптографическом закрытии (шифровании) передаваемых данных;
• проверке подлинности и целостности доставленной информации.
Для этих функций характерна взаимосвязь друг с другом. Их реализация основана на использовании криптографических методов защиты информации.
Для защиты локальных сетей и отдельных компьютеров от несанкционированных действий со стороны внешней среды обычно используют межсетевые экраны, поддерживающие безопасность информационного взаимодействия путем фильтрации двустороннего потока сообщений, а также выполнения функций посредничества при обмене информацией. Межсетевой экран располагают на стыке между локальной и открытой сетью. Для защиты отдельного удаленного компьютера, подключенного к открытой сети, программное обеспечение межсетевого экрана устанавливают на этом же компьютере, и такой межсетевой экран называется персональным.
Туннелирование
Защита информации в процессе ее передачи по открытым каналам основана на построении защищенных виртуальных каналов связи, называемых крипто защищенными туннелями. Каждый такой туннель представляет собой соединение, проведенное через открытую сеть, по которому передаются криптографический защищенные пакеты сообщений.
Создание защищенного туннеля выполняют компоненты виртуальной сети, функционирующие на узлах, между которыми формируется туннель. Эти компоненты принято называть инициатором и терминатором туннеля. Инициатор туннеля инкапсулирует (встраивает) пакеты в новый пакет, содержащий наряду с исходными данными новый заголовок с информацией об отправителе и получателе. Хотя все передаваемые по туннелю пакеты являются пакетами IP, инкапсулируемые пакеты могут принадлежать к протоколу любого типа, включая пакеты не маршрутизируемых протоколов, таких, как NetBEUI. Маршрут между инициатором и терминатором туннеля определяет обычная маршрутизируемая сеть IP, которая может быть и сетью отличной от Интернет. Терминатор туннеля выполняет процесс обратный инкапсуляции – он удаляет новые заголовки и направляет каждый исходный пакет в локальный стек протоколов или адресату в локальной сети.
Сама по себе инкапсуляция никак не влияет на защищенность пакетов сообщений, передаваемых по туннелю. Но благодаря инкапсуляции появляется возможность полной криптографической защиты инкапсулируемых пакетов. Конфиденциальность инкапсулируемых пакетов обеспечивается путем их криптографического закрытия, то есть зашифровывания, а целостность и подлинность – путем формирования цифровой подписи. Поскольку существует большое множество методов криптозащиты данных, очень важно, чтобы инициатор и терминатор туннеля использовали одни и те же методы и могли согласовывать друг с другом эту информацию.
Кроме того, для возможности расшифровывания данных и проверки цифровой подписи при приеме инициатор и терминатор туннеля должны поддерживать функции безопасного обмена ключами. Ну и наконец, чтобы туннели создавались только между уполномоченными пользователями, конечные стороны взаимодействия требуется аутентифицировать.
VPN на основе межсетевых экранов
Межсетевые экраны большинства производителей содержат функции туннелирования и шифрования данных. К программному обеспечению собственно межсетевого экрана добавляется модуль шифрования.
В качестве примера решения на базе межсетевых экранов можно назвать FireWall-1 компании Check Point Software Technologies. FairWall-1 использует для построения VPN стандартный подход на базе IPSec. Трафик, приходящий в межсетевой экран, дешифруется, после чего к нему применяются стандартные правила управления доступом. FireWall-1 работает под управлением операционных систем Solaris и Windows NT 4.0.
К недостаткам этого метода относятся высокая стоимость решения в пересчете на одно рабочее место и зависимость производительности от аппаратного обеспечения, на котором работает межсетевой экран. На рис. 2.9 показано пример совмещения межсетевого экрана и VPN.
При использовании межсетевых экранов на базе ПК надо помнить, что подобный вариант подходит только для небольших сетей с ограниченным объемом передаваемой информации.
Рис. 2.9. Пример совмещения межсетевого экрана и VPN
Оптимальные межсетевые экраны для малых и средних организаций с невысокими требованиями к безопасности
В данном разделе, рассматриваются широко распространенные аппаратные межсетевые экраны и приводятся рекомендации по их применению в зависимости от размера организации, требуемого уровня безопасности и стоимости решения. В первой части статьи рассмотрены решения, оптимальные для малых и средних организаций с невысокими требованиями к безопасности, а во второй — решения для малых и средних компаний и офисов филиалов, нуждающихся в надежной защите.
Выбор варианта
В настоящее время выбор межсетевых экранов очень широк, начиная от простого (и бесплатного) Windows Firewall, размещаемого на защищаемой машине, до высокопроизводительных межсетевых экранов с проверкой состояния пакетов стоимостью в десятки тысяч долларов. Как выбрать оптимальный вариант для конкретного организация? При выборе межсетевого экрана следует учитывать два основных фактора: требования безопасности и стоимость.
Требования безопасности.
Требования к безопасности постоянно меняются. Администратор должен сочетать надежную защиту с удобством пользовательского доступа к данным, а также учитывать принципиальные ограничения программ, авторы которых обращали мало внимания на безопасность хост-машины и сети.
Ограничения по стоимости. Цена — барьер между желаниями и действительностью. Главное препятствие на пути к высокой безопасности — затраты, которые готов или может нести пользователь. Уровень защиты, обеспечиваемый простым широкополосным маршрутизатором для малого/домашнего офиса с проверкой пакетов, значительно ниже, чем при применении промышленного межсетевого экрана с проверкой пакетов и контролем на прикладном уровне. В целом чем выше стоимость межсетевого экрана, тем надежнее защита. Уровень безопасности соответствует затратам, которые несет организация (на разовое приобретение аппаратных средств и программного обеспечения или на оплату консультантов по управлению недорогими решениями).
Решения, представленные в разделе
Рынок межсетевых экранов чрезвычайно велик и разнообразен, поэтому невозможно оценить каждого поставщика. Чтобы несколько упорядочить картину, было выбрано несколько поставщиков устройств, охватывающих весь спектр надежности и стоимости, от традиционных межсетевых экранов с проверкой пакетов до смешанных устройств с проверкой пакетов и приложений для устранения универсальных угроз (universal threat management, UTM). В данной статье представлены такие поставщики, как Cisco Systems, Network Engines, Rimapp, SonicWall и Symantec.
Главный акцент в обзоре сетевых межсетевых экранов для организаций различных размеров и требований к безопасности сделан на уровне защиты, а не характеристиках маршрутизации или дополнительных функциях устройства. Многие поставщики межсетевых экранов взимают дополнительную плату за передовые функции маршрутизации, которые никак не влияют на уровень безопасности. Например, не рассматривались маршрутизация на базе политик, качество обслуживания, прозрачность уровня управления передачей данных и другие сетевые усовершенствования, которые мало влияют на общую безопасность.
С другой стороны, продукты некоторых поставщиков располагают функциями Web-кэширования, значительно повышающими общую ценность приобретения для организации, которой не приходится покупать отдельное решение для кэширования. В результате повышается производительность при работе в Web и снижаются общие затраты на эксплуатацию канала Internet. Наличие Web-proxy также повышает безопасность.
Характеристики оценки межсетевых экранов
Ниже приводится краткий обзор характеристик, которые принимались во внимание при оценке аппаратных межсетевых экранов. Этот список поможет понять информацию, приведенную в таблице 3.2 и 3.3.
Цена. Стоимость конкретных межсетевых экранов у разных продавцов может сильно различаться. Приведенная в данном обзоре цена отражает стандартный набор функций без дополнительных модулей, которые приходится покупать отдельно. Модули расширения могут значительно повысить указанную цену.
Контроль на прикладном уровне с учетом состояния. Контроль на прикладном уровне с учетом состояния заключается в проверке как заголовков протокола, так и прикладных данных с использованием механизма контроля на прикладном уровне. Примеры — углубленная проверка на прикладном уровне данных и заголовков HTTP, данных и заголовков SMTP, данных и заголовков протокола Instant Messaging (IM).
Контроль прикладного протокола. Контроль прикладного протокола (иначе, углубленная проверка пакетов — deep packet inspection) позволяет анализировать протокол прикладного уровня и подтвердить его соответствие стандартам IETF (Internet Engineering Task Force) для наборов команд протоколов. Примеры — контроль протоколов DNS, FTP, POP3 и SMTP. В процессе контроля прикладного протокола проверка соответствия заданным условиям всех данных на прикладном уровне не выполняется.
Проверка пакетов на соответствие заданным условиям. Данный метод обеспечивает проверку заголовков сетевого и транспортного уровня в механизме фильтрации пакетов межсетевого экрана. Проверка пакетов на соответствие заданным условиям применяется практически во всех современных межсетевых экранов и одно время была стандартным методом защиты.
Прозрачная аутентификация Windows. Благодаря прозрачной аутентификации межсетевой экран получает учетные данные пользователя из клиентской операционной системы без постороннего вмешательства. Строгий контроль внешнего доступа пользователей и групп осуществляется без запроса учетных данных пользователя.