Смекни!
smekni.com

Анализ существующих информационно-поисковых систем (стр. 2 из 3)

3.3 Индексный механизм

Прежде чем ваши документы будут доступны для поиска, их необходимо проиндексировать. Объем индексной информации, полученной из текста, может быть в два раза больше чем сам тексте. А может еще больше, в случае если вы будете не оптимально использовать память. Алгоритм выглядит следующим образом:

1. получаем документ для индексирования;

2. регистрируем его в таблице document, запоминаем полученный его уникальный id и будем его называть doc_id;

3. разбиваем документ на отдельные слова;

4. узнаем уникальные id этих слов из таблицы dictionary и будем их называть dict_id;

5. потом заносим записи с нашим одним doc_id и разными dict_id (для каждого слова в документе) в таблицу match.

3.4 Поисковый механизм

После того как мы проиндексировали наши документы, нужно понять какие запросы посылать в базу, что бы искать эти документы по ключевым словам. Предположим, есть поисковая фраза "река объ". Пользователю необходимо получить все документы содержащие эти два слова. Сначала нужно обратиться к таблице dictionary и узнать уникальные id этих слов, далее будем их называть $dict_id1 и $dict_id2. Потом необходимо послать такой запрос в таблицу match, который выдаст только те номера документов, которые содержат эти два слова. Вотпримерэтогозапроса: SELECT doc_id FROM match where dict_id =$dict_id1 group by doc_id INTERSECT SELECT doc_id FROM match where dict_id=$dict_id2 group by doc_id. В случае если пользователь введет три слова, то вам придется добавить еще раз INTERSECT и третью часть SQL запроса. По полученным в результате запроса doc_id можно извлечь информацию об имени файла документа из таблицы document.

3.5 Комплексное функционирование

Что бы увидеть общее представление механизма взаимодействия с поисковой системой нужно взглянуть на рисунок 3.3:

Рисунок 3.3 Механизм взаимодействия с поисковой системой

Как видно из рисунка, существует три потока управления. Первый обслуживает запросы пользователя, второй выполняет поисковые запросы, а третий занимается индексированием новых документов поступающих в систему. Первый поток - это скрипт на Perl, Servlet, ASP или PHP, который из ключевых слов пользователя формирует поисковые SQL запросы. Второй поток - это СУ базой данных, которая поддерживает целостность данных, индексный механизм и обслуживает SQL запросы. Третий поток - это тоже скрипт, который работает с новыми документами, индексирует их и посылает запросы в базу данных на внесения новой индексной информации.


4 Принципы работы поисковой машины Рамблер

Интернет постоянно растет, так же как растет и число пользователей, которые обращаются с запросами к поисковым системам. Увеличение объема информации и количества запросов, в свою очередь, приводит к повышению требований к скорости работы поисковых машин, качеству поиска и наглядности представления результатов. Так, для того чтобы пользователь остался доволен результатом, на сегодняшний день поисковой системе нужно собрать, обработать, обновить, найти и отсортировать в два раза больше документов, чем год назад. А основная задача поиска как раз и состоит в том, чтобы пользователь был доволен его результатами.

Когда пользователь обращается с запросом к поисковой машине, он хочет найти то, что ему нужно, максимально быстро и просто. Получая результат, он оценивает работу системы, руководствуясь несколькими основными параметрами. Нашел ли он то, что искал? Если не нашел, то сколько раз ему пришлось переформулировать запрос, чтобы найти искомое? Насколько актуальную информацию он смог найти? Насколько быстро обрабатывала запрос поисковая машина? Насколько удобно были представлены результаты поиска? Был ли искомый результат первым или сотым? Как много ненужного мусора было найдено наравне с полезной информацией? Сможет ли он, вернувшись завтра и дав тот же запрос, получить те же результаты?

Для того, чтобы ответы на эти вопросы оставались хоть немного удовлетворительными, разработчики поисковых машин постоянно совершенствуют алгоритмы и принципы поиска, добавляют новые функции, ускоряют работу системы. В этой статье мы обратимся к механизму работы поисковой машины Рамблер, и на примере ее устройства продемонстрируем, как достигается повышение качества и скорости поиска в условиях постоянного роста объема информации в сети Интернет.

Полнота - это одна из основных характеристик поисковой системы, которая представляет собой отношение количества найденных по запросу документов к общему числу документов в Интернете, удовлетворяющих данному запросу.

Полнота поиска в большой мере зависит от работы системы сбора и обработки информации. В связи с постоянным ростом количества документов в сети, эта система в первую очередь должна быть масштабируемой. В Рамблере масштабируемость достигается за счет параллельного исполнения задачи произвольным количеством машин.

Сбором информации занимается робот-паук, который обходит страницы с заданными URL и скачивает их в базу данных, а затем архивирует и перекладывает в хранилище суточными порциями. Робот размещается на нескольких машинах, и каждая из них выполняет свое задание. Так, робот на одной машине может качать новые страницы, которые еще не были известны поисковой системе, а на другой - страницы, которые ранее уже были скачаны не менее месяца, но и не более года назад. Хранилище у всех машин едино. При необходимости работу можно распределить другим способом, например, разбив список URL на 10 частей и раздав их 10 машинам. Параллельная работа программы позволяет легко выдерживать дополнительную нагрузку: при увеличении количества страниц, которые нужно обойти роботу, достаточно просто распределить задачу на большее число машин.

После того, как все части информации обработаны, начинается объединение (слияние) результатов. Благодаря тому, что частичные индексные базы и основная база, к которой обращается поисковая машина, имеют одинаковый формат, процедура слияния является простой и быстрой операцией, не требующей никаких дополнительных модификаций частичных индексов. Основная база участвует в анализе как одна из частей нового индекса.

Сборка единой базы из частичных индексных баз представляет собой простой и быстрый процесс. Сопоставление страниц не требует никакой интеллектуальной обработки и происходит со скоростью чтения данных с диска. Если информации, которая генерируется на машинах-индексаторах, получается слишком много, то процедура "сливания" частей проходит в несколько этапов. Вначале частичные индексы объединяются в несколько промежуточных баз, а затем промежуточные базы и основная база предыдущей редакции пересекаются. Таких этапов может быть сколько угодно. Промежуточные базы могут сливаться в другие промежуточные базы, а уже потом объединяться окончательно. Поэтапная работа незначительно замедляет формирование единого индекса и не отражается на качестве результатов.

Точность - еще одна основная характеристика поисковой машины, которая определяется как степень соответствия найденных документов запросу пользователя. Например, если по запросу "Красная площадь" находится 150 документов, в 70 из них содержится словосочетание "Красная площадь", а в остальных просто присутствуют эти слова ("красная баба кричала на всю площадь"), то точность поиска считается равной 70/150 (~0,5). Чем точнее поиск, тем быстрее пользователь находит нужные ему документы, тем меньше "мусора" среди них встречается, тем реже найденные документы не соответствуют запросу.

Способ повышения точности поиска - это выделение устойчивых обозначений и поиск их как отдельных лексических единиц. На сегодняшний день в Рамблере реализована система распознавания таких конструкций, например C++, б/у, п/п-к. Если по запросу С++ поднимать все тексты, в которых присутствуют латинская буква С, а также знак +, то получится огромное количество документов, далеко не все из которых соответствуют запросу; кроме того, это большая работа, значительно увеличивающая время поиска.

Помимо автоматических способов увеличения точности поиска, существуют различные средства, с помощью которых пользователь сам может уточнить поиск по отдельным запросам. В первую очередь к ним относится специальный язык поискового запроса, используя который можно ограничивать количество найденных документов. Например, запрос или его часть, взятые в кавычки, обрабатываются буквально, с учетом всех стоп-слов, форм, порядка, знаков препинания. Это повышает точность поиска, но уменьшает его полноту: если часть, заключенная в кавычки, неточна, нужный документ найден не будет.

Актуальность - не менее важная характеристика поиска, которая определяется временем, проходящим с момента публикации документов в сети Интернет, до занесения их в индексную базу. Например, на следующий день после теракта в Тушино огромное количество пользователей обратились к поисковой машине Рамблер с соответствующими запросами. Объективно с момента публикации новостной информации на эту тему прошло меньше суток. Однако основные документы уже были заиндексированы и доступны для поиска, благодаря существованию "быстрой базы", которая обновляется два раза в день, а при необходимости может обновляться быстрее.

Скорость поиска тесно связана с его устойчивостью к нагрузкам. На сегодняшний день в рабочие часы к поисковой машине Рамблер приходит около 60 запросов в секунду. Такая загруженность требует сокращения времени обработки отдельного запроса. Здесь интересы пользователя и поисковой системы совпадают: посетитель хочет получить результаты как можно быстрее, а поисковая машина должна отрабатывать запрос максимально оперативно, чтобы не тормозить вычисление следующих. Схематично обработка поискового запроса изображена на рисунке 4.1