Теорема 3. Якщовстаціонарнійкрапці в0перші (n - 1) похідних функцій звертається в нуль, а , то при в=у0функція має:
(1) крапку перегину, якщо n – непарне;
(2) екстремальну крапку, якщо n – парне. Екстремальній крапці відповідаємаксимумпри і мінімум при .
1.3. Екстремальні задачі при наявності обмежень у виді рівності
Існує два методи оптимізації при наявності обмежень у виді рівностей. Один з них — метод Якобі. Він являє собою узагальнення симплекса-методу лінійного програмування. Дійсно, усі процедури, зв'язані з реалізацією симплекса-методу, можна обґрунтувати, користаючись методом Якобі. Інший метод, метод множників Лагранжа, тісно зв'язаний з методом Якобі і є його логічним розвитком.
2. АНАЛІЗ ЧУТЛИВОСТІ ЗА ДОПОМОГОЮ МЕТОДУ ЯКОБІ
2.1 Метод Якобі
Метод Якобі може бути використаний для дослідження чутливості оптимального значення f м малим змінам у правих частинах обмеження. Припустимо, наприклад, що в правій частині i-го обмеження gi(x)=0 фігурує величина
, а не нуль. Як це відіб'ється на оптимальному значенні f. Дослідження такого роду носять назви аналізу чутливості; вони мають визначену подібність з відповідними процедурами в лінійному програмуванні. Однак слід зазначити, що результати, одержувані при аналізі чутливості в нелінійному програмуванні, справедливі лише для малої околиці екстремальної крапки, і обумовлені можливістю локальної лінеаризації. Проте, знайомство з такими процедурами виявляється корисним при вивченні методу множників Лагранжа. Вище було показано, щоНехай
; тодіПідставивши останнє вираження в рівняння для
одержавши рівняннящо відповідає введеному раніше визначенню. Вираження для
(Y,Z) може бути використане при аналізі змін у припустимій околиці крапки Х0, викликуваних такими змінами і . В екстремальній (точніше, у будь-якій стаціонарній) крапці Хо=(Уо, Zо) приведений градієнт повинний звертатися в нуль. Таким чином, у крапці Хо справедлива рівність чиОтже, вплив малих змін на оптимальне значення f можна досліджувати шляхом оцінювання швидкості зміни f стосовно змін д. Ці величини звичайно називають коефіцієнтом чутливості.
В екстремальній крапці коефіцієнти
не залежать від конкретного вибору перемінний, формуючий вектор Y. Це обумовлено тим обставиною, що вираження, що визначає коефіцієнти чутливості, не містять Z.Тому розбивка вектора Х на Y і Z у даному випадку не є істотним чинником. Таким чином, зазначені коефіцієнти залишаються постійними при будь-якому виборі вектора Y. Вище показано, що коефіцієнти чутливості
можна використовувати для дослідження впливу малих змін у правих частинах обмежень на оптимальне значення f. Крім того, було так само відзначене, що ці коефіцієнти є постійними величинами. Перераховані властивості коефіцієнтів чутливості виявляються корисними при рішенні задач з обмеженнями у виді рівностей. Нехай
відкіля .Це рівняння відбивають необхідні умови стаціонарності крапок, тому що формула
була отримана з урахуванням припущення про те, що . Рівняння можна записати в більш зручній формі, якщо перейти до часток похідним по всім Xj, що приводить до системи J=1,2…nОтримані рівняння разом з обмеженнями g=0 дають можливість визначити припустимі вектори х і
, що задовольняють необхідні умови стаціонарності.2.1 Метод Лагранжа
Описана вище процедура складає основу так називаного методу множників Лагранжа, що дозволяє ідентифікувати стаціонарні крапки при рішенні оптимізаційних задач з обмеженнями у виді рівностей. Схему цього методу можна формально представити в такий спосіб. Нехай
L(x,)=
(x, ) - g(x) .Функція L називається функцією Лагранжа. Параметри
звуться множників Лагранжа і, як випливає з визначення, мають той же зміст, що і коефіцієнти чутливості описані вище. Рівняння івиражають розглянуті вище необхідні умови наявності єкстремуми, що породжуються функцією Лагранжа безпосередньо. Це означає, що задача оптимізації з цільовою функцією f(x) при наявності обмеження g(х)=0 еквівалентна задачі перебування безумовного єкстремуми функції Лагранжа
L(x,
). Достатні умови, використовувані при реалізації методу множників Лагранжа, формулюються нижче без доказу. Визначимо матрицю , де і для всіх i і J = +Матриця НB являє собою так називану облямовану матрицю Гессе.
Нехай дана стаціонарна крапка (х0,
0) функції Лагранжа L (х, ), а облямована матриця Гессе НВ сформована зі значень відповідних елементів у крапці (Хо, 0). Тоді Х0 є:1) крапкою максимуму, якщо, починаючи з головного мінору порядку (m+l), наступні (n-m) головних мінорів матриці НВ утворять знакоперемінний числовий ряд, знак першого члена якого визначається множником ,(-1)м+1;
2) крапкою мінімуму, якщо, починаючи з головного мінору порядку (m+1), знак наступних (n-m) головних мінорів матриці НВ визначається множником (-1)м. Сформульовані умови виявляються достатніми для ідентифікації екстремальної крапки, але не є необхідними. Іншими Словами, стаціонарна крапка, що не задовольняє цим умовам, може бути екстремальною. Існують інші умови для ідентифікації екстремальних крапок, що є як необхідними, так і достатніми. Однак практичне використання цих умов у ряді випадків зв'язано зі значними обчислювальними труднощями. Визначимо матрицю
утворену значеннями відповідних функцій у стаціонарній крапці (Хо,
0). Тут µ - невідомий параметр, а Р и Q визначені вище. Нехай | |-визначник матриці ; тоді кожний з (n-m) дійсних коренів і i полінома | |=0 повинний бути:1)негативним, якщо хо - крапка максимуму;
2)позитивним, якщо хо- крапка мінімуму.
Один з методів, що іноді застосовуються для рішення систем рівнянь, що виражають необхідні умови наявності екстремуми, полягає в послідовному виборі числових значень
, після реалізації, якого дана система зважується відносно х.