Смекни!
smekni.com

Аналогові і гібридні електричні обчислювальні машини (стр. 2 из 2)

Резистори на схемі знаходяться з відповідних коефіцієнтів передачі за допомогою вираження:

K=1/RC > R=1/KC

При цьому ємність конденсатора вибирається рівної 1 мкф.

Для суматоров і інверторів До визначається як відношення резистора зворотного зв'язку до резистора, через який підключається потенціал.

Ємність конденсатора C=C2=C4 =C 6 =C8 =3.9 *10-6Ф

K=1/RC → R=1/KC

Розрахунок для першого ОУ:

Розрахунок для інших ОУ:

Коефіцієнти для правої частини

Резистори вихідного суматора повинні бути рівні між собою:

R131=R141=R151=R161= 10000 W

У схемах обнуління конденсаторів конденсатори С11 і С12 (завдання нульових початкових умов) резистори R122 і R123 рівні 1МW

5.2 Розрахунок елементів для схеми установки початкових умов

Для рішення рівняння необхідно забезпечить завдання початкових умов задачі. Організуємо пристрій завдання початкових умов виходячи з принципу попередньої зарядки конденсатора зворотного зв'язку інтегратора. Цього можна домогтися, якщо перетворити схему інтегратора за допомогою чи перемикачів посилюючих реле в режим iнерцiального ланки (мал. 3)

Data E R1 R2

C1 C

2

R1

K

Мал.3 Схема завдання початкових умов

При перебуванні ключа К в положенні 1 вихідний сигнал схеми з достатньою точністю описується рівнянням ідеального інтегратора.

При перебуванні ключа в положенні 2 на вході підсилювача діє резистор R1, на який подається постійна напруга (у даному випадку з цифро-аналогового перетворювача). Для зменшення часу заряду конденсатора паралельно з резистором R1 включається конденсатор С1. Напруга на виході підсилювача в операторнiй формі визначається вираженням:

U(p) =

Якщо вибрати параметри схеми так, щоб R1C1 = R2C2, то напруга на виході буде дорівнює:

, тобто воно установиться практично миттєво. При розробці схеми варто дотримувати умови R1C1=R2C2, тому що при R1C1<R2C2 процес зарядки конденсаторів протікає по експонентному законі, тобто має місце затримка установки напруги, а при R1C1>R2C2 на виході інтегратора виникає стрибок напруги небезпечний тим, що може перевищити припустимий діапазон виміру напруги підсилювача.

При розрахунку схем завдання початкових умов необхідно задати не тільки параметри резисторів і конденсаторів, але і параметри ЦАП.

Розрахунок для ДА1 виглядає в такий спосіб:

Т.к. С2 = 3.9 мкф і, прийнявши Е = 10V, одержимо, R22 = 100 kW, R23 = 175 kW, C1 = 6.8 мкф.

Крім того, тому що ЦАП 8-розрядний, те прийнявши Uоп =8 V, знайдемо B – число, яке треба подати на ЦАП:

Повторюючи алгоритм рішення для всіх схем завдання початкових умов, одержимо:

Для ДА2: E = 10V; C3 = 3.9 мкф; R24 = 100 kW, R25 = 100 kW; Uоп = 8 V; B = 320

Для ДА3: E = 10V; C4 = 1.6*10-5ф; R26 = 100 kW, R27 = 400 kW; Uоп = 8 V; B = 320

Для ДА4: E = 10V; C5 = 2.6 мкф; R28 = 100 kW, R29 = 66 kW; Uоп = 8 V; B = 320

Для ДА5: E = 10V; C6 = 1.2 мкф; R30 = 100 kW, R31 = 30 kW; Uоп = 8 V; B = 320

Для ДА6: E = 10V; C7 = 2.7 мкф; R32 = 100 kW, R33 = 70 kW; Uоп = 8 V; B = 320


6. Розрахунок параметрів із припустимою погрішністю

При проектуванні необхідно враховувати, що за час інтегрування значення інтеграла може вийти за межі ±10 В. Також операційний підсилювач відрізняється від ідеального інтегратора з деякою погрішністю, що може перевищити припустиму швидше часу інтегрування.

Для перевірки таких випадків застосовують наступні формули:


Де Ку – коефіцієнт підсилення операційного підсилювача;

Е – напруга початкової умови на даному інтеграторі;

t – час інтегрування (1 с);

R і C – номінали елементів даного інтегратора.

(Uдоп – припустима погрішність;

Напруги на інтеграторах вхідних до складу правої частини рівняння будуть рівні 0, тому що початкові установки на них нульові.

Для інтеграторів отримані наступні результати:

Для ДА1: U(t) = 0.5 V; T = 2223 с

Для ДА2: U(t) = 9.7 V ; T = 1.5 с

Для ДА3: U(t) = 1.1 V ; T = 8.2 с

Для ДА4: U(t) = 0.4 V ; T = 4 с

Для ДА5: U(t) = 7.3 V ; T = 0.6 с

Для ДА6: U(t) = 5.1 V ; T = 1.4 с

Як видно з результатів, усі вихідні напруги інтеграторів не перевищують максимального значення машинної перемінної (10 V), а корисний час інтегрування – заданого часу циклічного перезапуску машини. Це значить, що рішення рівняння на даної АВМ можливо з погрішністю, меншої чим задана (dUдоп = 0.5%).

7. Опис функціонування гібридної ЕОМ

Схема електрична принципова синтезованої ГЕВМ (додаток 1) являє собою композицію аналогової обчислювальної машини і засобів сполучення її з цифровий ЕОМ.

Безпосередньо АЕВМ складається з 8 операційних підсилювачів. П'ять з них служать інтеграторами (ДА1, ДА2, ДА3, ДА4, ДА5). Три інтегратори (ДА6, ДА7, ДАК8) служать для формування правої частини рівняння. У схемі використані мікросхеми операційних підсилювачів K544УД2. Дані підсилювачі є прецизійними і мають максимальний коефіцієнт підсилення, малий рівень шумів, високу перешкодозахищеність і дозволяють будувати схеми, погрішність яких не перевищує визначену в завданні на проектування даної курсової роботи.

Для завдання початкових умов рівняння за допомогою цифровий ЕОМ використовуються 5 мікросхем (DD14 – DD18) цифро-аналогових перетворювачів (ЦАП). У даному випадку використовуються мікросхеми КР572ПА1А представляючi собою швидкодіючі 10‑розрядні ЦАП. По вхідних логічних рівнях мікросхеми сумісні з ТТЛ цифровими інтегральними схемами, що дозволяє організувати їхнє сполучення з рівнобіжним інтерфейсом ЕОМ. Двоiчний код подається на старші 8 розрядів ЦАП відповідно до обчислень у п. 5.2.

На ЦАП коди чисел подаються через найпростіше коммутуюче пристрій, що складається з 8‑ми 6‑розрядних демультиплексорiв, що комутирують кожний з розрядів шини даних ЕОМ на кожен регістр перед ЦАП. На шині адреси АВМ повинний по черзі бути присутнім двоiчнi адреса того ЦАП, інформація в який записується. Сигнал WR шини керування повинний бути дорівнює 1 протягом всієї операції запису. У якості демультиплексорiв узяті мікросхеми K155IД3, а як регістри K155IР13.

Взаємодія АВМ і ЦОМ організована в такий спосіб: ЦОМ на початку записує потрібні значення в регістри. Для цього вона переводить АВМ у режим запису (встановлює в 1 сигнал WR шини керування). Цей сигнал переводить всі аналогові комутатори (DD19 – DD23) схем завдання початкових умов у положення запису. Для цей же цілей служить сигнал NWR. Сигнал WR подається також на регістри, стробуя запис, у них будучи одночасно і сигналом керування, і синхроімпульсом. Запис здійснюється по черзі в усі регістри. Адреса поточного регістра в двоiчнiй формі подається на шину адреси. Після здійснення запису ЦОМ установлює WR у 0, переключаючи ключі в режим обчислення. У будь-який момент часу ЦОМ може перевірити значення напруги на виході будь-якого інтегратора, а саме на виходах ТАК1, ТАК2, ТАК3, ТАК4, ТАК5. Для цього в шині керування передбачені спеціальні сигнали: ОА1 – ОА5. На ці лінії подається унітарний код, що відповідає номеру тестуемоi мікросхеми:

ДА1 = 100000 ДA5 = 000010

ДА2 = 010000 ДA6 = 000001

ДА3 = 001000

ДА4 = 000100

Виходи цих мікросхем комутируються на АЦП (DD28) за допомогою аналогових комутаторів DD25‑DD27. Безпосередньо для зчитування необхідно на лінії ОА подати код мікросхеми (00000 для рішення рівняння, інші для зчитування), на лінію RD необхідно подати 1. Тоді АЦП (ДО1108ПВ1А) почне перетворення, видавши на шину даних результат, стробуя його сигналом READY на шині керування.

Список літератури

1. Прагер И.Л. Електронні аналогові обчислювальні машини.

2. Лебедєва А.Н. Аналогові і гібридні обчислювальні машини.

3. Федорков Б.Г. Мікросхеми ЦАП і АЦП:функціонування, параметри, застосування. – М. Энергоатомiздат, 1990.

4. Копитчук Н.Б Методичні вказівки до курсового проектування по дисципліні «Аналогові і гібридні ЕОМ». ОГПУ.1997.

5. Шило В.Л. Популярні цифрові мікросхеми: Довідник. – М. Радіо і зв'язок, 1987.