Смекни!
smekni.com

Аналоговые и гибридные машины (стр. 1 из 2)

Введение

Целью курсового проекта по дисциплине «Аналоговые и гибридные ЭВМ» является закрепление основных теоретических знаний и практических навыков в ходе самостоятельной работы.

Методы аналоговой вычислительной техники вместе с методами цифровой вычислительной техники занимают важное место в современной науке и технике. Исследование физических процессов и сложных динамических систем, которые описываются системами дифференциальных уравнений высокого порядка с большим количеством нелинейностей, наиболее целесообразно проводить при помощи АВМ. Это объясняется тем, что специфика аналоговых машин позволяет инженеру не только выполнять ряд необходимых вычислений, но и исследовать системы в условиях, максимально близких к реальным ситуациям.

В ходе работы необходимо:

1. разработать программу решения дифференциального уравнения с изменяемой правой частью.

2. обеспечить управление процессом решения и задания начальных условий при помощи цифровой ЭВМ.


1. Выбор варианта задания

35 – число, заданное преподавателем

3 – номер по списку

35+3=38 – номер варианта

Для варианта 38 заданы следующие параметры:

ny (t) Ymax NT, с ∆Uдоп, % m МП, V

5 cos t 0,5 10 1 0,2 6 +10

n – порядок дифференциального уравнения

N – разрядность аналого – цифровых и цифроаналоговых преобразователей, которые задают входные величины и преобразуют результаты решения

у(t) – математическое описание нелинейной функции

Ymax – амплитудное значение нелинейной функции

T – период перезапуска моделирующей схемы

∆Uдоп – допустимая погрешность интегрирования

Начальные условия:

x4(0) х3(0) х2(0) х1(0)х(0)

0 3 0 1 6

Максимальные значения :

x5max x4max х3max х2max х1max xmax

-8 -8 8 -7 -5 1

Коэффициенты:

a4 а3 а2 а1 а0 b

2 1 -1 2 12 28

t= t(0)=0

Интервал ty определения нелинейной функции

Заданное уравнение имеет вид:

2. Выполнение программирования задачи

Заданное уравнение имеет вид:

Заданное уравнение записываем относительно старшей производной:

Построение предварительной схемы решения уравнения:

2.1 Расчёт масштабных переменных

Масштабом произвольной переменной называется число, показывающее величину напряжения, приходящегося на единицу этой переменной. В общем случае масштаб Мх определяется выражением:

Мх = Uмп/xmax [в/ед.],

где Uмп – напряжение, действующее в машине.

3.2 Расчёт коэффициентов передачи

Для усилителя у1:

Для усилителя у2:

Для усилителя у3:

Для усилителя у4:

Для усилителя у5:

Для усилителя у6:

Для усилителя у7:

Для усилителя у8:

3.3 Расчёт напряжений начальных условий

Знак начальных условий определяется знаком действующей на выходе усилителя переменной. Если она имеет свой знак (+), то начальные условия подаются с заданным в задаче знаком; если переменная на выходе усилителя формируется с противоположным знаком (–), то начальные условия вводятся с обратным заданному знаком. Для ввода начальных условий в машину, их величины трансформируют с помощью масштабов в соответствующие значения напряжений, при этом получим:

Ux4(0) = Mx4 * x4(0) * (-1) = (-1.25)*0*(-1) = 0V

Ux3(0) = Mx3 * x3(0) * (+1) = 1.25*3*(+1) = 3.75V

Ux2(0) = Mx2 * x2(0) * (-1) = -1.429*0*(-1) = 0V

Ux1(0) = Mx1 * x1(0) * (+1) = -2*0*(+1) = -2V

Ux (0) = Mx * x (0) * (-1) = 10*6*(-1) = -60V – выходит за пределы МП=+-10V

Новые значения напряжения начальных условий:

Ux (0) = M`x * x (0) * (-1) = 1.667*6*(-1) = -10V


3. Аппроксимация нелинейной функции

x 0 p/12 p/6 p/4 p/3 5p/12 p/2

y 0,5 0,483 0,433 0,354 0,25 0,129 0

Так как интервал разбиения функции равен

, то вычисляем следующие коэффициенты наклона соответствующих участков аппроксимируемой функции:

14 1

1.Построение блоков формирования отрезков аппроксимирующей функции


5. Формирование функции времени

Интервал изменения:

Время циклического перезапуска: T = 1c

Теперь смоделируем функцию: