Федеральное агентство по образованию
Тольяттинский Государственный Университет
Кафедра информатики и вычислительной техники
Реферат на тему
”Аппаратные средства вывода графической информации.
Средства визуального отображения графической информации."
Выполнили: студентки группы ПИ-202
Проверила:
Тольятти, 2009
Стандартным устройством вывода графической информации в компьютере IBM считается система, которая состоит из монитора и видеокарты.
Монитор.
Размер монитора измеряется по диагонали в дюймах. Мониторы имеют размер от 10 до 21 дюйма. Существуют монохромные (черно-белые) и цветные мониторы.
Видеокарта.
Основные компоненты видеокарты - это видеопроцессор и видеопамять.
Видеопроцессор - это специальная микросхема, которая реагирует на команды управления экраном. От свойств видеопроцессора зависит скорость, с которой выполняются операции с графическими объектами на экране.
Видеопамять - это часть оперативной памяти для хранения сформированного изображения. От объема видеопамяти зависит доступное графическое и цветовое разрешение.
Графическое разрешение экрана.
Экран состоит из отдельных точек изображения, которые называются пикселами. Количество точек изображения (пикселов), размещающихся на экране по горизонтали и вертикали определяет графическое разрешение экрана. Графическое разрешение зависит от свойств монитора и видеокарты.
Стандартный ряд графических разрешений: 320х200, 640х480, 800х600, 1024х768, 1152х864, 1200х1024, 1600х1200 и т.д. Минимальным графическим разрешением для Windows95 считается 640 пикселов по горизонтали и 480 пикселов по вертикали (640х480).
От разрешающей способности монитора зависит качество изображения. Чем выше разрешение экрана, тем меньше размер каждого пиксела, тем выше четкость изображения.
Цветовое разрешение экрана.
Количество одновременно воспроизводимых цветов на экране называется цветовым разрешением экрана.
Минимальное требование операционной системы Windows 95 16 цветов.
Таблица 1: Связь между размерами файла и разрешением изображения
Графическое разрешение Цветовое разрешение Размер файла
640х480 256 300 Кбайт
640х480 Более 65000 600 Кбайт
640х480 Более 16 млн. 900 Кбайт
Современные компьютеры обладают удивительными возможностями воздействия на наши органы чувств. Все три основные сенсорные системы, которые различают психологи, - визуальная, аудиальная и кинестетическая (телесные ощущения) - принимают информацию от компьютера: мы наблюдаем великолепное изображение на экране, слышим потрясающий пространственный звук из динамиков и даже ощущаем вибрацию и рывки при использовании джойстиков и рулей с силовой обратной связью.
Хотим мы того или нет, но ПК с каждым годом превращаются во все более совершенные средства для создания виртуальной реальности. Чего стоит одна только трехмерная графика, не говоря уж об объемном звучании с точным позиционированием десятков источников звуковых колебаний в трехмерном пространстве вокруг слушателя!
На протяжении последних двадцати лет компьютерной эволюции мы наблюдаем процесс распределения вычислительной мощности по узлам компьютера - специализированные процессоры появились в графических адаптерах, звуковых платах, сетевых контроллерах и даже в подсистемах внешней памяти, например в RAID-контроллерах. Впрочем, несколько раз фирмы громогласно объявляли о повороте этой тенденции вспять, ссылаясь на появление новых ЦП, способных заменить специализированные сигнальные процессоры. Так, корпорация Intel в середине 1990-х гг. в поддержку архитектуры P6 выдвинула инициативу Native Signal Processing, а Apple после перевода Macintosh на PowerPC организовала выпуск интерфейса GeoPort, позволяющего подключать к компьютеру недорогие неинтеллектуальные коммуникационные устройства.
Постепенно и незаметно во второй половине 1990-х гг. унификация перешла с аппаратного уровня на программный. Например, если в начале 90-х все выпускаемые графические контроллеры должны были быть совместимыми по регистрам ввода-вывода с VGA, а звуковые платы - с Sound Blaster, то сегодня такая совместимость соблюдается редко - производители теперь следят за тем, чтобы обеспечить правильное взаимодействие адаптера с драйверами DirectX.
Отметим, что основные законодатели мод в компьютерной индустрии (корпорации Intel и Microsoft) не всегда согласуют свои усилия. Например, в 1998 г. Microsoft выпустила систему Windows 98, которая позволяет одновременно использовать несколько графических плат PCI, а Intel к тому моменту уже вовсю переводила графические контроллеры на новую шину AGP.
Мониторы
В развитии ЭЛТ-мониторов за последние 10 лет революционных изменений не происходило, но наблюдались пять примечательных процессов: переход на стандарты безопасности (MPR, TCO и др.), внедрение системы VESA DDC для передачи информации о параметрах монитора в компьютер, увеличение частоты обновления экрана, снижение энергопотребления и улучшение эргономических характеристик. Все перечисленные стандарты и технологии внедрялись постепенно, причем зачастую одновременно, поэтому мы упоминаем их в произвольном порядке.
Малоизлучающие мониторы, отмеченные значками MPR II и TCO-92, в начале 1990-х гг. существенно снизили утомляемость при длительной работе за экраном. Благодаря стандарту VESA DDC дисплеи присоединились к длинному перечню устройств класса PnP: система Windows начиная с версии 95 ограждает пользователя от случайной установки чрезмерно жестких графических режимов, выводящих частоты синхронизации монитора за предельные значения.
С увеличением диапазонов частот горизонтальной и вертикальной развертки в 90-х гг. увеличилось максимальное разрешение, а частота обновления изображения возросла до уровня 85-100 Гц, при котором большинство пользователей не замечают мерцания. После внедрения технологий энергосбережения отпала необходимость отдельно включать и выключать питание системного блока компьютера и монитора.
Многочисленные ручки и кнопки настройки на мониторах уступили место удобным экранным меню, а некоторые фирмы (например, Mitsubishi) даже применили USB-интерфейс для того, чтобы пользователь мог настраивать монитор из программы. Среди изобретений последних лет отметим систему LightFrame фирмы Philips, которая аппаратным способом увеличивает яркость картинки в отдельных областях экрана, и ее аналоги от других производителей.
Примерно до конца 1990-х гг. фирмы продолжали создавать новые варианты электронных пушек и масок, но в нынешнем десятилетии мало кто из производителей всерьез занимается совершенствованием ЭЛТ-технологии, гораздо больше внимания уделяя ЖК-дисплеям.
Благодаря быстрому снижению цен, ЖК-мониторы за последние год-два в глазах большинства покупателей превратились из недоступных принцев/принцесс в спутников жизни. Приятно, что расширение углов обзора и увеличение контрастности сопровождалось удешевлением матриц. Схемы управления ЖК-мониторами цифровые по своей природе, поэтому именно ЖК-технология принесла в мониторы цифровые интерфейсы DVI.
Сегодня ЖК-мониторы уверенно вытесняют ЭЛТ во многих областях применения, кроме самых недорогих компьютеров и станций для графических работ и предпечатной подготовки, где требуется точная цветопередача.
В последний год на рынке появились большие ЖК-панели размером до 42 дюймов по диагонали, которые должны составить серьезную конкуренцию плазменным панелям.
LCD-мониторы
LCD (Liquid Crystal Display, жидкокристаллические мониторы) сделаны из вещества, которое находится в жидком состоянии, но при этом обладает некоторыми свойствами, присущими кристаллическим телам. Жидкие кристаллы были открыты давным-давно, но изначально они использовались для других целей. Молекулы жидких кристаллов под воздействием электричества могут изменять свою ориентацию и вследствие этого изменять свойства светового луча проходящего сквозь них. Основываясь на этом открытии и в результате дальнейших исследований, стало возможным обнаружить связь между повышением электрического напряжения и изменением ориентации молекул кристаллов для обеспечения создания изображения. Первое свое применение жидкие кристаллы нашли в дисплеях для калькуляторов и в кварцевых часах, а затем их стали использовать в мониторах для портативных компьютеров. Сегодня, в результате прогресса в этой области, начинают получать все большее распространение LCD-мониторы для настольных компьютеров. Далее речь пойдет только о традиционных LCD-мониторах, так называемых Nematic LCD.
Экран LCD-монитора представляет собой массив маленьких сегментов (называемых пикселями), которые могут манипулироваться для отображения информации. LCD-монитор имеет несколько слоев, где ключевую роль играют две панели сделанные из свободного от натрия и очень чистого стеклянного материала, называемого субстрат или подложка, которые собственно и содержат тонкий слой жидких кристаллов между собой. На панелях имеются бороздки, которые направляют кристаллы, сообщая им специальную ориентацию. Бороздки расположены таким образом, что они параллельны на каждой панели, но перпендикулярны между двумя панелями. Продольные бороздки получаются в результате размещения на стеклянной поверхности тонких пленок из прозрачного пластика, который затем специальным образом обрабатывается. Соприкасаясь с бороздками, молекулы в жидких кристаллах ориентируются одинаково во всех ячейках. Молекулы одной из разновидностей жидких кристаллов (нематиков) в отсутствии напряжения поворачивают вектор электрического (и магнитного) поля в такой световой волне на некоторый угол в плоскости, перпендикулярной оси распространения пучка. Две панели расположены очень близко друг к другу. Жидко-кристаллическая панель освещается источником света (в зависимости от того, где он расположен, жидко-кристаллические панели работают на отражение или на прохождение света). Плоскость поляризации светового луча поворачивается на 90° при прохождении одной панели.