По курсу: “Системное программирование и вычислительные системы”
На тему: “Арифметические операции с BCD числами”
Содержание:
1. ДВОИЧНО-ДЕСЯТИЧНЫЙ ФОРМАТ (BCD)……………………….3
2. Арифметические инструкции…………………………………………..4
2.1. Форматы арифметических данных…………………………………..4
2.2. Арифметические операции и флаги…………………………………5
2.3. Сложение………………………………………………………………6
2.4. Вычитание……………………………………………………………..7
2.5. Умножение…………………………………………………………….8
2.6. Деление…………………………………………………………………9
3. ЛИТЕРАТУРА………………………………………………………….12
1. ДВОИЧНО-ДЕСЯТИЧНЫЙ ФОРМАТ (BCD)
Пусть в некотором примере деления в ASCII-формате было получено частное 00090204. Если сжать это значение, сохраняя только правые цифры каждого байта, то получим 0924. Такой формат называется двоично-десятичным (BCD - Binary Coded Decimal) (или упакованным). Он содержит только десятичные цифры от 0 до 9. Длина двоично-десятичного представления в два раза меньше ASCII-представления.
Заметим, однако, что десятичное число 0924 имеет основание 10 и, будучи преобразованным в основание 16 (т.е. в шест. представление), даст шест.039C.
ПРЕОБРАЗОВАНИЕ ASCII-ФОРМАТА В ДВОИЧНЫЙ ФОРМАТ
Выполнение арифметических операций над числами в ASCII или BCD форматах удобно лишь для коротких полей. В большинстве случаев для арифметических операций используется преобразование в двоичный формат. Практически проще преобразование из ASCII-формата непосредственно в двоичный формат, чем преобразование из ASCII- в BCD-формат и, затем, в двоичный формат:
Метод преобразования базируется на том, что ASCII-формат имеет основание 10, а компьютер выполняет арифметические операции только над числами с основанием 2. Процедура преобразования заключается в следующем:
1. Начинают с самого правого байта числа в ASCII-формате и обрабатывают справа налево.
2. Удаляют тройки из левых шест. цифр каждого ASCII-байта.
3. Умножают ASCII-цифры на 1, 10, 100 (шест.1, A, 64) и т.д. и складывают результаты.
Для примера рассмотрим преобразование числа 1234 из ASCII-формата в двоичный формат:
Десятичное Шестнадцатеричное
H
4 х 1 = 4 4
3 х 10 = 30 1E
2 х 100 = 200 C8
1 х 1000 = 1000 - 3E8 –
Результат: 04D2
Из этого примера видно, что шестнадцатеричное число .04D2 действительно соответствует десятичному 1234.
Арифметические операции процессоров 8086/8088 могут выполняться над операндами 4-х типов (таблица 2.1):
1. Двоичные без знака.
2. Двоичные со знаком (целые).
3. Упакованные десятичные без знака.
4. Распакованные десятичные без знака.
Таблица 2.1. Арифметическая интерпретация 8-битовых чисел.
16-ричное | битовое | дв. беззнака | дв. сознаком | распак.десятич. | упак.десят. |
0789C5 | 000001111000100111000101 | 7137197 | +7-119-59 | 7некорр.некорр. | 789некор. |
Двоичные числа могут занимать 1 или 2 байта. Десятичные числа хранятся побайтно по 2 десятичной цифре на байт для упакованного формата или по 1 десятичной цифре на байт для распакованного формата. Процессор предполагает, что определенные в арифметических инструкциях операнды содержат данные, представляющие корректные для данной инструкции числа. Некорректные данные могут привести к непредсказуемым результатам.
Двоичные числа без знака могут занимать 8 или 16 бит; все биты значимы. Диапазон значений 8-битового числа - от 0 до 255, 16-битового - от 0 до 65535. Над двоичными числами без знака можно выполнять операции сложения, вычитания, умножения и деления.
Двоичные числа со знаком (целые) могут занимать также 8 или 16 бит. Значение старшего бита (самого левого) задает знак числа : 0 - положительное, 1 - отрицательное. Отрицательные числа представляются стандартным дополнением до 2. Поскольку один разряд отведен под знак, диапазон изменения 8-битового числа - от -127 до +127, 16-битового -от -32768 до +32767. Число 0 имеет положительный знак. Над двоичными числами со знаком могут быть выполнены операции умножения и деления. Сложение и вычитание выполняются без учета знака. Для обнаружения переноса в знаковый разряд в результате беззнаковой операции можно использовать инструкции условного перехода.
Упакованные десятичные числа хранятся как беззнаковые байтовые величины. Каждый байт содержит 2 десятичные цифры, занимающие по 4 бита каждая. Цифра в старшем полубайте более значима. В каждом полубайте допустимы только 16-ричные значения от 0 до 9; соответственно пределы изменения десятичного числа - от 0 до 99. Сложение и вычитание таких чисел выполняются в 2 стадии. Сначала применяется обычная беззнаковая двоичная инструкция, которая формирует в регистре AL промежуточный результат. Затем выполняется операция настройки (инструкция DAA или DAS), преобразующая содержимое AL в корректный упакованный десятичный результат. Умножение и деление упакованных десятичных чисел невозможно.
Распакованные десятичные числа хранятся как беззнаковые байтовые величины. Десятичная цифра располагается в младшем полубайте. Допустимы и интерпретируются как десятичные числа 16-ричные значения от 0 до 9. Для выполнения операций умножения и деления старший полубайт должен быть заполнен нулями; для сложения и вычитания он может содержать любое значение. Арифметические операции над распакованными десятичными числами выполняются в 2 стадии. Сначала используются обычные беззнаковые инструкции сложения, вычитания или умножения, которые формируют в регистре AL промежуточный результат. Затем выполняется операция настройки (инструкция AAA,AAS или AAM), преобразующая содержимое AL в результирующее корректное распакованное десятичное число. Деление выполняется аналогично, за исключением того, что сначала следует настроить числитель в AL (инструкция AAD), а затем выполнить инструкцию беззнакового двоичного деления, результатом которого будет корректное распакованное десятичное число.
Формат десятичных распакованных чисел подобен представлению десятичных цифр в коде ASCII. При этом для числа в коде ASCII старший полубайт содержит 16-ричное значение 3. Возможное содержимое старшего полубайта для распакованного формата приведено выше. Преобразование из одного вида в другой сложности не представляет.
Арифметические инструкции процессоров 8086/8088 оставляют после своего выполнения некоторые характеристики результатов операций в виде значений 6 флагов. Большинство из них могут анализироваться последующими инструкциями условного перехода; может также использоваться инструкция прерывания по переполнению INTO. Влияние каждой инструкции на флаги указано при описании инструкции.
Однако имеются следующие общие правила:
1. Флаг переноса CF устанавливается в 1, если в результате операции сложения был перенос из старшего бита или в результате операции вычитания был заем в старший бит результата. Если же переноса или заема не было, CF устанавливается в 0. Заметим, что знаковый перенос характеризуется различными значениями флагов CF и OF. Флаг CF может использоваться для обнаружения беззнакового переполнения. Следует помнить, что 2 инструкции, ADC (сложение с переносом) и SBB (вычитание с заемом) вовлекают CF в свои операции и могут быть поэтому использованы для мультибайтного (32-, 64-разрядного) сложения и вычитания.
2. Флаг промежуточного переноса AF устанавливается в 1 при переносе из младшего полубайта результата во время сложения или при заеме в младший полубайт результата во время вычитания. Если же переноса или заема не было, AF устанавливается в 0. Флаг AF введен для выполнения десятичной настройки и обычно в других целях не используется.
3. Флаг знака SF устанавливается арифметическими и логическими инструкциями равным старшему (7-му или 15-му) биту результата. Для двоичных чисел со знаком SF будет равен 0 в случае положительного результата и 1 - в случае отрицательного (если нет переполнения). Значение флага SF может анализироваться после сложения или вычитания инструкциями условного перехода. Программы, выполняющие беззнаковые операции, обычно игнорируют SF, т.к. старший бит результата в этом случае интерпретируется как двоичная цифра, а не как знак.
4. Флаг нуля ZF устанавливается в 1, если результат арифметической или логической операции равен 0, и устанавливается в 0, если результат отличен от 0. Значение флага может анализироваться инструкциями условного перехода.
5. Флаг паритета PF устанавливается в 1, если младшие 8 бит результата арифметической или логической операции содержат четное число единиц, и устанавливается в 0, если число единиц нечетно. Флаг PF введен для совместимости с процессорами 8080/8085; он может также использоваться для контроля символов в коде ASCII на корректность паритета.
6. Флаг переполнения OF устанавливается в 1, если результат слишком велик для положительного числа или слишком мал для отрицательного и не помещается в операнд-приемник (не считая знаковый разряд). В противном случае значение OF -0. Состояние этого флага отражает наличие арифметического переполнения со знаком. Он может анализироваться инструкциями условного перехода или инструкцией INTO. В беззнаковых операциях OF обычно игнорируется.
ADD приемник,источник СЛОЖЕНИЕ БАЙТОВ ИЛИ СЛОВ
Арифметическая сумма 2-х операндов, которыми могут быть байты или слова, замещает операнд-приемник. Оба операнда могут содержать двоичные числа со знаком или без него (см. AAA и DAA). ADD модифицирует флаги AF, CF, OF, PF, SF и ZF.
ADC приемник,источник СЛОЖЕНИЕ С ПЕРЕНОСОМ
Эта инструкция выполняет арифметическую сумму своих операндов, добавляет 1, если установлен в 1 флаг CF, и помещает результат на место операнда-приемника. Оба операнда могут содержать двоичные числа со знаком или без него (см. AAA и DAA). ADC модифицирует флаги AF, CF, OF, PF, SF и ZF. Поскольку ADC использует перенос от предыдущей операции, она может применяться для сложения чисел длиннее 2 байтов.