В более привычной для человека десятичной системе счисления (по основанию 10) для представления чисел используется десять символов: 0, 1, 2, 3, 4,5,6,7,8и 9. Чтобы составить число, значение которого в десятичной системе счисления больше 9 (например, 27), комбинируют две цифры: при этом позиции символов имеют определенный смысл. Прогрессия значений, связанная с позицией цифры, возрастает, как показано на рис. 2., пропорционально степени основания.
Рис. 2. Пример представления числа в десятичной системе счисления
Десятичное число, состоящее хотя бы из двух цифр, является суммой различных степеней основания, умноженных на соответствующую цифру. Так, число 10 представляет собой сумму из одного десятка (101) и нуля единиц (100), а число 423 — сумму из четырех сотен (102), двух десятков (101) и трех единиц (100).
Рассмотренный метод представления чисел достаточно универсален и используется в других системах счисления, в которых основание отлично от десяти. Например, в системе с основанием 8 задействовано восемь символов: 0, 1, 2, 3, 4, 5, 6 и 7, а значимость каждой позиции возрастает пропорционально степени числа 8, как показано на рис.3.
Рис. 3. Пример предоставления числа в восьмеричной системе счисления.
Как уже отмечалось, компьютер способен обрабатывать информацию в двоичной системе счисления. В ней используются только два символа 0 и 1, а смещение символа на одну позицию влево увеличивает значение числа пропорционально степени основания 2. На рис. 4 показано восьмибитовое (1 байт) представление числа 58 в двоичной системе счисления.
Рис. 4. Пример представления числа в двоичной системе счисления.
3. Перевод числа из одной системы счисление в другую
Из всех систем счисления особенно проста и поэтому интересна для технической реализации в компьютерах двоичная система счисления. Эта система имеет ряд преимуществ перед другими системами:
· для ее реализации нужны технические устройства с двумя устойчивыми состояниями (есть ток — нет тока, намагничен — не намагничен и т.п.), а не, например, с десятью, — как в десятичной;
· представление информации посредством только двух состояний надежно и помехоустойчиво;
· возможно применение аппарата булевой алгебры для выполнения логических преобразований информации;
· двоичная арифметика намного проще десятичной.
Недостаток двоичной системы — быстрый рост числа разрядов, необходимых для записи чисел. Являясь удобной для компьютеров, для человека двоичная система неудобна из-за ее громоздкости и непривычной записи.
Перевод чисел из десятичной системы в двоичную и наоборот выполняет машина. Однако чтобы профессионально использовать компьютер, следует научиться понимать слово машины. Для этого и разработаны восьмеричная и шестнадцатеричная системы.
Числа в этих системах читаются почти так же легко, как десятичные, требуют соответственно в три (восьмеричная) и в четыре (шестнадцатеричная) раза меньше разрядов, чем в двоичной системе (ведь числа 8 и 16 – соответственно, третья и четвертая степени числа 2).
Перевод восьмеричных и шестнадцатеричных чисел в двоичную систему очень прост: достаточно каждую цифру заменить эквивалентной ей двоичной триадой (тройкой цифр) или тетрадой (четверкой цифр).
То есть, чтобы перевести число из двоичной системы в восьмеричную или шестнадцатеричную, его нужно разбить влево и вправо от запятой на триады (для восьмеричной) или тетрады (для шестнадцатеричной) и каждую такую группу заменить соответствующей восьмеричной (шестнадцатеричной) цифрой.
При переводе целого десятичного числа в систему с основанием q его необходимо последовательно делить на q до тех пор, пока не останется остаток, меньший или равный q–1. Число в системе с основанием q записывается как последовательность остатков от деления, записанных в обратном порядке, начиная с последнего.
Пример: Перевести число 75 из десятичной системы в двоичную, восьмеричную и шестнадцатеричную:
Ответ: 7510 = 1 001 0112 = 1138 = 4B16.
Как пеpевести пpавильную десятичную дpобь в любую другую позиционную систему счисления?
Пpи переводе правильной десятичной дpоби в систему счисления с основанием q необходимо сначала саму дробь, а затем дробные части всех последующих произведений последовательно умножать на q, отделяя после каждого умножения целую часть произведения. Число в новой системе счисления записывается как последовательность полученных целых частей произведения. Умножение производится до тех поp, пока дробная часть произведения не станет равной нулю. Это значит, что сделан точный пеpевод. В противном случае перевод осуществляется до заданной точности. Достаточно того количества цифp в pезультате, котоpое поместится в ячейку.
Пример: Перевести число 0,35 из десятичной системы в двоичную, восьмеричную и шестнадцатеричную:
Ответ: 0,3510 = 0,010112 = 0,2638 = 0,5916 .
При переводе числа из двоичной (восьмеричной, шестнадцатеричной) системы в десятичную надо это число представить в виде суммы степеней основания его системы счисления.
4. Арифметические операции в позиционных системах счисления
Рассмотрим основные арифметические операции: сложение, вычитание, умножение и деление. Правила выполнения этих операций в десятичной системе хорошо известны — это сложение, вычитание, умножение столбиком и деление углом. Эти правила применимы и ко всем другим позиционным системам счисления.
При сложении цифры суммируются по разрядам, и если при этом возникает избыток, то он переносится влево.
Пример: Сложим числа 15 и 6 в шестнадцатеричной системе счисления: F16 + 61615 + 6 = 2110 = 101012 = 258;
Ответ: = 1516.
Проверка. Преобразуем полученные суммы к десятичному виду:
101012= 24 + 22 + 20 = 16+4+1=21,
258 = 2*81 + 5*80 = 16 + 5 = 21,
1516 = 1*161 + 5*160 = 16+5 = 21.
Пример: Вычтем единицу из чисел 102, 108 и 1016
Вычтем единицу из чисел 1002, 1008 и 10016.
Вычтем число 59,75 из числа 201,25.
Ответ: 201,2510 – 59,7510 = 141,510 = 10001101,12 = 215,48 = 8D,816.
Проверка: Преобразуем полученные разности к десятичному виду:
10001101,12 = 27 + 23 + 22 + 20 + 2–1 = 141,5;
215,48 = 2*82 + 1*81 + 5*80 + 4*8–1 = 141,5;
8D,816 = 8*161 + D*160 + 8*16–1 = 141,5.
Выполняя умножение многозначных чисел в различных позиционных системах счисления, можно использовать обычный алгоритм перемножения чисел в столбик, но при этом результаты перемножения и сложения однозначных чисел необходимо заимствовать из соответствующих рассматриваемой системе таблиц умножения и сложения.
Ввиду чрезвычайной простоты таблицы умножения в двоичной системе, умножение сводится лишь к сдвигам множимого и сложениям.
Пример: Перемножим числа 5 и 6.
Ответ: 5*6 = 3010 = 111102 = 368.
Проверка: Преобразуем полученные произведения к десятичному виду:
111102 = 24 + 23 + 22 + 21 = 30; 368 = 3•81 + 6•80 = 30.
Пример: Перемножим числа 115 и 51.
Ответ: 115*51 = 586510 = 10110111010012 = 133518.
Проверка: Преобразуем полученные произведения к десятичному виду:
10110111010012 = 212 + 210 + 29 + 27 + 26 + 25 + 23 + 20 = 5865;
133518 = 1*84 + 3*83 + 3*82 + 5*81 + 1*80 = 5865.
Деление в любой позиционной системе счисления производится по тем же правилам, как и деление углом в десятичной системе. В двоичной системе деление выполняется особенно просто, ведь очередная цифра частного может быть только нулем или единицей.
Пример: Разделим число 30 на число 6.
Ответ: 30 : 6 = 510 = 1012 = 58.
Пример: Разделим число 5865 на число 115.
Восьмеричная: 133518 :1638
Ответ: 5865 : 115 = 5110 = 1100112 = 638.
Проверка: Преобразуем полученные частные к десятичному виду:
1100112 = 25 + 24 + 21 + 20 = 51; 638 = 6*81 + 3*80 = 51.
Заключение
В структуру автоматизированной информационной системы входят несколько подсистем. Одной из таких подсистем является математическое и программное обеспечение, то есть совокупность математических методов, моделей, алгоритмов и программ для реализации целей и задач информационной системы, а также нормального функционирования комплекса технических средств.
Фундаментом науки о вычислительных машинах является конструктивная математика, в основе которой лежит математическая логика и теория алгоритмов с их однозначностью в оценке суждений и процедур вывода. Для описания элементов и узлов ЭВМ с самого начала использовалась математическая логика, а для описания компьютерных программ - теория алгоритмов.
Математическая логика - это дисциплина, изучающая технику математических доказательств. Отличие математических суждений от обычных разговорных высказываний состоит в том, что математические суждения всегда предполагают однозначную интерпретацию, в то время как наши обычные высказывания зачастую допускают многозначную трактовку.
Работа ЭВМ как автоматических устройств основана исключительно на математически строгих правилах выполнения команд, программ и интерпретации данных. Тем самым работа компьютеров допускает строгую однозначную проверку правильности своей работы в плане заложенных в них процедур и алгоритмов обработки информации.
С появлением самых первых компьютерных программ, имитирующих интеллектуальную деятельность людей, возникло понятие«искусственный интеллект» ивсе компьютерные программы, демонстрирующиеинтеллектуальное поведение, основаны на использовании определенного математического аппарата, опирающегося на законы математической логики и соответственно, имеющего арифметические основы. Без понимания этих законов и основ невозможно понимание принципов работы вычислительных машин вообще и систем искусственного интеллекта в частности.
Список литературы
1. Громов Ю. Ю., О. Г. Иванова, А. В. Лагутин. Информатика: Учебное пособие. Тамбов: Изд-во Тамб. гос. техн. ун-та, 2002.
2. Каймин В.А. Информатика: Учебник. - М.: ИНФРА-М,2000.
3. Сергеева И.И., Мазулевская А.А., Тарасова Н.В. Информатика: учебник. – М.: ИД «Форум»: ИНФРА – М, 2007.