Смекни!
smekni.com

Архитектура промышленной сети BitBus (стр. 7 из 23)

Все устройства подключаются к одной витой паре одинаково: прямые выходы (A) к одному проводу, инверсные (B) - к другому.

Входное сопротивление приемника со стороны линии (RAB) обычно составляет 12 КОм. Так как мощность передатчика не беспредельна, это создает ограничение на количество приемников, подключенных к линии.

Согласно спецификации RS-485 c учетом согласующих резисторов передатчик может вести до 32 приемников. Однако есть ряд микросхем с повышенным входным сопротивлением, что позволяет подключить к линии значительно больше 32 устройств.

Максимальная скорость связи по спецификации RS-485 может достигать 10 Мбод/сек. Максимальное расстояние - 1200 м. Если необходимо организовать связь на расстоянии большем 1200 м или подключить больше устройств, чем допускает нагрузочная способность передатчика - применяют специальные повторители (репитеры).

Стандартные параметры интерфейсов RS-422 RS-485
Допустимое число передатчиков / приемников 1 / 10 32 / 32
Максимальная длина кабеля 1200 м 1200 м
Максимальная скорость связи 10 Мбит/с 10 Мбит/с
Диапазон напряжений "1" передатчика +2...+10 В +1.5...+6 В
Диапазон напряжений "0" передатчика -2...-10 В -1.5...-6 В
Диапазон синфазного напряжения передатчика -3...+3 В -1...+3 В
Допустимый диапазон напряжений приемника -7...+7 В -7...+12 В
Пороговый диапазон чувствительности приемника ±200 мВ ±200 мВ
Максимальный ток короткого замыкания драйвера 150 мА 250 мА
Допустимое сопротивление нагрузки передатчика 100 Ом 54 Ом
Входное сопротивление приемника 4 кОм 12 кОм
Максимальное время нарастания сигнала передатчика 10% бита 30% бита

Таблица 2.1. Сравнение RS-422 и RS-485

2.3 Согласование и конфигурация линии связи

При больших расстояниях между устройствами, связанными по витой паре и высоких скоростях передачи начинают проявляться так называемые эффекты длинных линий. Причина этому - конечность скорости распространения электромагнитных волн в проводниках. Скорость эта существенно меньше скорости света в вакууме и составляет немногим больше 200 мм/нс. Электрический сигнал имеет также свойство отражаться от открытых концов линии передачи и ее ответвлений. Грубая аналогия - желоб, наполненный водой. Волна, созданная в одном конце, идет по желобу и, отразившись от стенки в конце, идет обратно, отражается опять и так далее, пока не затухнет. Для коротких линий и малых скоростей передачи этот процесс происходит так быстро, что остается незамеченным. Однако, время реакции приемников - десятки/сотни нс. В таком масштабе времени несколько десятков метров электрический сигнал проходит отнюдь не мгновенно. И если расстояние достаточно большое, фронт сигнала, отразившийся в конце линии и вернувшийся обратно, может исказить текущий или следующий сигнал. В таких случаях нужно каким-то образом подавлять эффект отражения.

У любой линии связи есть такой параметр, как волновое сопротивление Zв. Оно зависит от характеристик используемого кабеля, но не от длины. Для обычно применяемых в линиях связи витых пар Zв=120 Ом. Оказывается, что если на удаленном конце линии, между проводниками витой пары включить резистор с номиналом равным волновому сопротивлению линии, то электромагнитная волна дошедшая до "тупика" поглощается на таком резисторе. Отсюда его названия - согласующий резистор или "терминатор".

Большой минус согласования на резисторах - повышенное потребление тока от передатчика, ведь в линию включается низкоомная нагрузка. Поэтому рекомендуется включать передатчик только на время отправки посылки. Есть способы уменьшить потребление тока, включая последовательно с согласующим резистором конденсатор для развязки по постоянному току. Однако, такой способ имеет свои недостатки. Для коротких линий (несколько десятков метров) и низких скоростей (меньше 38400 бод) согласование можно вообще не делать.

Эффект отражения и необходимость правильного согласования накладывают ограничения на конфигурацию линии связи.

Линия связи должна представлять собой один кабель витой пары. К этому кабелю присоединяются все приемники и передатчики. Расстояние от линии до микросхем интерфейса RS-485 должно быть как можно короче, так как длинные ответвления вносят рассогласование и вызывают отражения.

В оба наиболее удаленных конца кабеля (Zв=120 Ом) включают согласующие резисторы Rt по 120 Ом (0.25 Вт), рисунок 2.6. Если в системе только один передатчик и он находится в конце линии, то достаточно одного согласующего резистора на противоположном конце линии.


Рис. 2.6. Схема подключения согласующих резисторов.

2.4 Защитное смещение

Как уже упоминалось, приемники большинства микросхем RS-485 имеют пороговый диапазон распознавания сигнала на входах A-B - ±200мВ. Если |Uab| меньше порогового (около 0), то на выходе приемника RO могут быть произвольные логические уровни из-за несинфазной помехи. Такое может случиться либо при отсоединении приемника от линии, либо при отсутствии в линии активных передатчиков, когда никто не задает уровень.

Чтобы в этих ситуациях избежать выдачи ошибочных сигналов на приемник UART, необходимо на входах A-B гарантировать разность потенциалов Uab > +200мВ. Это смещение при отсутствии входных сигналов обеспечивает на выходе приемника логическую "1", поддерживая, таким образом, уровень стопового бита.

Добиться этого просто - прямой вход (А) следует подтянуть к питанию, а инверсный (B) - к "земле". Получается делитель, рисунок 2.7.:

Рис. 2.7. Защита схемы от выдачи ошибочных сигналов.


Rвх - входное сопротивление приемника (обычно 12 кОм);

Rc - согласующие резисторы (120 Ом);

Rзс - резисторы защитного смещения.

Величины сопротивлений для резисторов защитного смещения (Rзс) нетрудно рассчитать по делителю. Необходимо обеспечить Uab > 200мВ. Напряжение питания - 5В. Сопротивление среднего плеча - 120Ом//120Ом//12КОм на каждый приемник - примерно 57 Ом (для 10 приемников). Таким образом, выходит примерно по 650 Ом на каждый из двух Rзс. Для смещения с запасом - сопротивление Rзс должно быть меньше 650 Ом. Традиционно ставят 560 Ом.

В расчете номинала Rзс учитывается нагрузка. Если на линии висит много приемников, то номинал Rзс дожен быть меньше. В длинных линиях передачи необходимо так же учитывать сопротивление витой пары, которое может "съедать" часть смещающей разности потенциалов для удаленных от места подтяжки устройств. Для длинной линии лучше ставить два комплекта подтягивающих резисторов в оба удаленных конца рядом с терминаторами.

Многие производители приемопередатчиков заявляют о функции безотказности (failsafe) своих изделий, заключающейся во встроенном смещении. Следует различать два вида такой защиты:

- Безотказность в открытых цепях. (Open circuit failsafe.)

В таких приемопередатчиках применяются встроенные подтягивающие резисторы. Эти резисторы, как правило, высокоомные, чтобы уменьшить потребление тока. Из-за этого необходимое смещение обеспечивается только для открытых (ненагруженных) дифференциальных входов. В самом деле, если приемник отключен от линии или она не нагружена, тогда в среднем плече делителя остается только большое входное сопротивление, на котором и падает необходимая разность потенциалов. Однако, если приемопередатчик нагрузить на линию с двумя согласующими резисторами по 120 Ом, то в среднем плече делителя оказывается меньше 60 Ом, на которых, по сравнению с высокоомными подтяжками, ничего существенного не падает. Поэтому, если в нагруженной линии нет активных передатчиков, то встроенные резисторы не обеспечивают достаточное смещение. В этом случае, остается необходимость устанавливать внешние резисторы защитного смещения, как это было описано выше.

- Истинная безотказность. (True failsafe.)

В этих устройствах смещены сами пороги распознавания сигнала. Например: -50 / -200 мВ вместо стандартных порогов ±200 мВ. То есть при Uab>-50мВ на выходе приемника RO будет логическая "1", а при Uab<-200 - на RO будет "0". Таким образом, и в разомкнутой и в пассивной линии при разности потенциалов Uab близкой к нулю, приемник выдаст "1". Для таких приемопередатчиков внешнее защитное смещение не требуется. Тем не менее, для лучшей помехозащищенности все-таки стоит дополнительно немного подтягивать линию.

Сразу виден минус внешнего защитного смещения - через делитель постоянно будет протекать ток, что может быть недопустимо в системах малого потребления. В таком случае можно сделать следующее:

а). Уменьшить потребление тока, увеличив сопротивления Rзс. Хотя производители приемопередатчиков и пишут о пороге распознавания в 200мВ, на практике вполне хватает 100мВ и даже меньше. Таким образом, можно сразу увеличить сопротивления Rзс раза в два-три. Помехозащищенность при этом несколько снижается, но во многих случаях это не критично.

б). Использовать true failsafe приемопередатчики со смещенными порогами распознавания. Например, у микросхем MAX3080 и MAX3471 пороги: -50мВ / -200мВ, что гарантирует единичный уровень на выходе приемника при отсутствии смещения (Uab=0). Тогда внешние резисторы защитного смещения можно убрать или значительно увеличить их сопротивление.

в). Не применять без необходимости согласование на резисторах. Если линия не будет нагружена на 2 по 120 Ом, то для обеспечения защитного смещения хватит подтяжек в несколько килоом в зависимости от числа приемников на линии.

Для опторазвязанной линии подтягивать следует к питанию и "земле" изолированной линии. Если не применяется опторазвязка, подтягивать можно к любому питанию, так как делитель создаст лишь небольшую разность потенциалов между линиями A и B. Нужно только помнить о возможной разности потенциалов между "землями" устройств, расположенных далеко друг от друга.