Центральный процессор - основной блок ЭВМ, в котором происходит обработка данных и вычисление результатов. Представляет собой несколько системных блоков в отдельной комнате, где поддерживается постоянная температура и влажность воздуха.
Группа системного программирования - занимается разработкой, отладкой и внедрением программного обеспечения, необходимого для функционирования вычислительной системы. Системные программы обеспечивают взаимодействие программ с оборудованием, то есть программно-аппаратный интерфейс вычислительной системы.
Группа прикладного программирования - занимается созданием программ для выполнения конкретных действий с данными, то есть обеспечение пользовательского интерфейса вычислительной системы.
Группа подготовки данных - занимается подготовкой данных, которые будут обработаны на прикладных программах, созданных прикладными программистами. В частности, это набор текста, сканирование изображений, заполнение баз данных.
Группа технического обеспечения - занимается техническим обслуживанием всей вычислительной системы, ремонтом и отладкой аппаратуры, подсоединением новых устройств.
Группа информационного обеспечения - обеспечивает технической информацией все подразделения вычислительного центра, создает и сохраняет архивы разработанных программ (библиотеки программ) и накопленных данных (банки данных).
Отдел выдачи данных - получает данные от центрального процессора и превращает их в форму, удобную для заказчика (распечатка).
Большим ЭВМ присуща высокая стоимость оборудования и обслуживания, поэтому работа организована непрерывным циклом.
МиниЭВМ
Похожа на большие ЭВМ, но меньших размеров. Используют на крупных предприятиях, научных учреждениях и организациях. Часто используют для управления производственными процессами. Характеризуются мультипроцессорной архитектурой, подключением до 200 терминалов, дисковыми запоминающими устройствами, которые наращиваются до сотен гигабайт, разветвленной периферией. Для организации работы с миниЭВМ, нужен вычислительный центр, но меньший чем для больших ЭВМ.
МикроЭВМ
Доступны многим учреждениям. Для обслуживания достаточно вычислительной лаборатории в составе нескольких человек, с наличием прикладных программистов. Необходимые системные программы покупаются вместе с микроЭВМ, разработку прикладных программ заказывают в больших вычислительных центрах или специализированных организациях.
Программисты вычислительной лаборатории занимаются внедрением приобретенного или заказанного программного обеспечения, выполняют его настройку и согласовывают его работу с другими программами и устройствами компьютера. Могут вносить изменения в отдельные фрагменты программного и системного обеспечения.
Персональные компьютеры
Бурное развитие приобрели в последние 20 лет. Персональный компьютер (ПК) предназначен для обслуживания одного рабочего места и способен удовлетворить потребности малых предприятий и отдельных лиц. С появлением Интернета популярность ПК значительно возросла, поскольку с помощью персонального компьютера можно пользоваться научной, справочной, учебной и развлекательной информацией.
Персональные компьютеры условно можно поделить на профессиональные и бытовые, но в связи с удешевлением аппаратного обеспечения, грань между ними размывается. С 1999 года введен международный сертификационный стандарт - спецификация РС99:
массовый персональный компьютер (Consumer PC)
деловой персональный компьютер (Office PC)
портативный персональный компьютер (Mobile PC)
рабочая станция (WorkStation)
развлекательный персональный компьютер (Entertaiment PC)
Большинство персональных компьютеров на рынке подпадают до категории массовых ПК. Деловые ПК - имеют минимум средств воспроизведения графики и звука. Портативные ПК отличаются наличием средств коммуникации отдаленного доступа (компьютерная связь). Рабочие станции - увеличенные требования к устройствам хранения данных. Развлекательные ПК - основной акцент на средствах воспроизведения графики и звука.
Классификация по уровню специализации
универсальные;
специализированные.
На базе универсальных ПК можно создать любую конфигурацию для работы с графикой, текстом, музыкой, видео и т.п.. Специализированные ПК созданы для решения конкретных задач, в частности, бортовые компьютеры в самолетах и автомобилях. Специализированные миниЭВМ для работы с графикой (кино- видеофильмы, реклама) называются графическими станциями. Специализированные компьютеры, объединяющие компьютеры в единую сеть, называются файловыми серверами. Компьютеры, обеспечивающие передачу информации через Интернет, называются сетевыми серверами.
Классификация по размеру
настольные (desktop);
портативные (notebook);
карманные (palmtop).
Наиболее распространенными являются настольные ПК, которые позволяют легко изменять конфигурацию. Портативные удобны для пользования, имеют средства компьютерной связи. Карманные модели можно назвать "интеллектуальными" записными книжками, разрешают хранить оперативные данные и получать к ним быстрый доступ.
Классификация по совместимости
Существует великое множество типов компьютеров, которые собираются из деталей, изготовленных разными производителями. Важным является совместимость обеспечения компьютера:
аппаратная совместимость (платформа IBM PC и Apple Macintosh)
совместимость на уровне операционной системы;
программная совместимость;
совместимость на уровне данных.
Архитектура современных суперЭВМ
В этом обзоре не имеет смысла останавливаться на деталях классификации архитектуры суперкомпьютеров [3,4], ограничимся только рассмотрением типичных архитектур суперЭВМ, широко распространенных сегодня, и приведем классическую систематику Флинна [5].
В соответствии с ней, все компьютеры делятся на четыре класса в зависимости от числа потоков команд и данных. К первому классу (последовательные компьютеры фон Неймана) принадлежат обычные скалярные однопроцессорные системы: одиночный поток команд - одиночный поток данных (SISD). Персональный компьютер имеет архитектуру SISD, причем не важно, используются ли в ПК конвейеры для ускорения выполнения операций.
Второй класс характеризуется наличием одиночного потока команд, но множественного nomoka данных (SIMD). К этому архитектурному классу принадлежат однопроцессорные векторные или, точнее говоря, векторно-конвейерные суперкомпьютеры, например, Cray-1 [6]. В этом случае мы имеем дело с одним потоком (векторных) команд, а потоков данных - много: каждый элемент вектора входит в отдельный поток данных. К этому же классу вычислительных систем относятся матричные процессоры, например, знаменитый в свое время ILLIAC-IV. Они также имеют векторные команды и реализуют векторную обработку, но не посредством конвейеров, как в векторных суперкомпьютерах, а с помощью матриц процессоров.
К третьему классу - MIMD - относятся системы, имеющие множественный поток команд и множественный поток данных. К нему принадлежат не только многопроцессорные векторные суперЭВМ, но и вообще все многопроцессорные компьютеры. Подавляющее большинство современных суперЭВМ имеют архитектуру MIMD.
Четвертый класс в систематике Флинна, MISD, не представляет практического интереса,по крайней мере для анализируемых нами компьютеров. В последнее время в литературе часто используется также термин SPMD (одна программа - множественные данные). Он относится не к архитектуре компьютеров, а к модели распараллеливания программ и не является расширением систематики Флинна. SPMD обычно относится к MPP (т.е. MIMD) - системам и означает, что несколько копий одной программы параллельно выполняются в разных процессорных узлах с разными данными.
Интересно также упомянуть о принципиально ином направлении в развитии компьютерных архитектур - машинах потоков данных[7]. В середине 80-х годов многие исследователи полагали, что будущее высокопроизводительных ЭВМ связано именно с компьютерами, управляемыми потоками данных, в отличие от всех рассмотренных нами классов вычислительных систем, управляемых потоками команд. В машинах потоков данных могут одновременно выполняться сразу много команд, для которых готовы операнды. Хотя ЭВМ с такой архитектурой сегодня промышленно не выпускаются, некоторые элементы этого подхода нашли свое отражение в современных суперскалярных микропроцессорах, имеющих много параллельно работающих функциональных устройств и буфер команд, ожидающих готовности операндов. В качестве примеров таких микропроцессоров можно привести HP РА-8000 [8] и Intel Pentium Pro [9].
В соответствии с классификацией Флинна, рассмотрение архитектуры суперЭВМ следовало бы начать с класса SISD. Однако все векторно-конвейерные (в дальнейшем - просто векторные) суперЭВМ имеют архитектуру "не меньше" SIMD. Что касается суперкомпьютерных серверов, использующих современные высокопроизводительные микропроцессоры, таких как SGI POWER CHALLENGE на базе R8000 или DEC AlphaServer 8200/8400 на базе Alpha 21164, то их минимальные конфигурации бывают однопроцессорными. Однако, если не рассматривать собственно архитектуру этих микропроцессоров, то все особенности архитектуры собственно серверов следует анализировать в "естественной" мультипроцессорной конфигурации. Поэтому начнем анализ суперкомпьютерных архитектур сразу с класса SIMD.