- отримані співвідношення для розрахунків похибок спільного виміру mr і s трубчастих виробів;
- на основі аналізу похибок і чутливості перетворювача до параметрів трубчастого виробу визначені раціональні режими роботи перетворювача з трубчастими виробами різноманітного асортименту;
- приведені приклади практичної реалізації розроблених методів і пристроїв для безконтактного контролю параметрів труб.
Практичне значення одержаних результатів полягає в тому, що: знайдені співвідношення, які описують універсальні функції перетворення, алгоритми розрахункових і вимірювальних операцій, методики розрахунків перетворювача й оцінок чутливості і похибок двухпараметрового контролю дозволяють проектувати установки на основі електромагнітного перетворювача для спільного контролю магнітних, електричних і геометричних параметрів циліндричних трубчастих виробів, визначити метрологічні характеристики цих установок (частотний діапазон, діапазон зміни контрольованих величин), підібрати вимірювальні прилади необхідних класів точності, установити раціональні за похибками та чутливостям режими роботи. Розроблені безконтактні методи і пристрої контролю магнітних, електричних і геометричних параметрів трубчастих виробів дозволили контролювати такі фізичні величини, як механічні напруги (у тому числі границі текучості і міцності), температури виробів і рідини, що протікає у трубі, знос трубчастих виробів (товщини стінки) у процесі експлуатації. Ці методи впроваджені на ПО "Запорізька АЕС".
Особистий внесок здобувача полягає в наступному:
- отримані універсальні функції перетворення трансформаторного перетворювача для контролю параметрів трубчастих виробів;
- на основі отриманих функцій розроблені методики безконтактного контролю магнітних, електричних і геометричних параметрів як для феромагнітних так і неферомагнітних трубчастих виробів різного сортаменту;
- розроблена принципова електрична схема включення трансформаторного перетворювача для двохпараметрового контролю, отримані співвідношення для оцінки похибок і чутливостей перетворювача;
- отримані основні співвідношення для розрахунку очікуваних вихідних електричних сигналів трансформаторного електромагнітного перетворювача з контрольованим трубчастим виробом, які дозволяють вибрати вимірювальну апаратуру для реалізації двохпараметрового контролю параметрів труби в широкому діапазоні їхньої зміни.
Апробація дисертації.
Основні результати роботи доповідалися на:
- II Міжнародній науково-технічній конференції - школі-семінарі молодих вчених аспірантів і докторантів "Спорудження, конструкції, технології і будівельні матеріали ХХI століття", Белгород, 1999 р.;
- 12й Міжнародній школі-семінарі "Перспективні системи керування на залізничному, промисловому і міському транспорті", Харків, 1999 р.;
- II Міжнародної науково-технічної конференції "Метрологія та вимірювальна техніка", Харків, 1999 р.
Публікації: основні результати дисертації опубліковані в 7 наукових працях, у тому числі 4 статті в наукових журналах і 3 роботи в працях міжнародних науково-технічних конференціях.
Структура дисертації. Дисертаційна робота складається зі вступу, чотирьох розділів, заключення, списку використаних джерел та додатків. Повний обсяг дисертації складає 188 сторінок: 38 ілюстрацій на 29 стор., 6 таблиць на 6 стор., додаток на 22 стор., список літератури містить 102 найменування на 9 стор.
ОСНОВНИЙ ЗМІСТ РОБОТИ
У вступній частині зазначена актуальність теми дослідження, відмічено зв’язок роботи з науковими темами, вказана мета дисертаційної роботи та сформульовані основні задачі дисертації, показана наукова новизна та її практичне значення, розглянуто особистий внесок автора у друкованих працях із співавторами, наведена апробація роботи та структура дисертації.
У першому розділі проаналізовано відомі методи та пристрої для визначення електромагнітних і геометричних параметрів виробів у змінних магнітних полях. Наведено конструкції різних видів датчиків для неруйнівного контролю виробів різних конфігурацій. Розглянуто двох і трьох параметрові методи і засоби електромагнітного контролю магнітної проникності, питомої електричної провідності і радіусу суцільних циліндричних виробів і зразків у повздовжніх та поперечних зондуючих магнітних полях. Відмічена важливість багатопараметрового контролю виробів, який дає можливість одержати повну інформацію про об’єкт контролю. Встановлено, що методи і перетворювачі для визначення магнітних, електричних та геометричних параметрів трубчастих феромагнітних, слабомагнітних і немагнітних виробів недостатньо описані в існуючій літературі. Останній фактор надав поштовх подальшої розробки таких методів і засобів, які і розглянуті у цій дисертації.
У другому розділі розглянуто електромагнітний метод і реалізуючі його установки з трансформаторним ТЕМП і параметричним ПЕМП перетворювачами для безконтактного контролю відносної магнітної проникності mr і питомої електричної провідності s циліндричних трубчастих виробів і зразків.
На рис. 1 показаний зовнішній вигляд прохідного електромагнітного перетворювача з циліндричним трубчастим виробом. Як видно, всередині перетворювача існують 3 змінних магнітних потоки Ф1, Ф2 і Ф3, тобто у повітряному зазорі, у стінці труби і у повітряному середовищі всередині труби, відповідно. На основі рівнянь Максвела і закону Ома було наведено рівняння дифузії синусоїдального за часом магнітного поля у провідну трубу. Рішення цього рівняння з граничними умовами дало можливість одержати співвідношення для визначення розподілу напруженості магнітного поля у стінці і всередині труби. Проінтегрував це співвідношення за поперечним перерізом труби, знайдемо вирази для магнітних потоків Ф2 и Ф3. узявши геометричну суму цих двох потоків знайдемо вираз для розрахунку сумарного магнітного потоку Ф23 у стінці та всередині трубчатого виробу. Після цього був введений комплексний параметр
, який характеризує питомий нормований магнітний потік у трубі на одиницю mr. , (1) , (2)де | A=ber1xker1y-bei1xbei1y-ker1xber1y+kei1xbei1y; (3)B=bei1xker1y+ber1xkei1y-kei1xber1y-ker1xbei1y; (4)C=-berxkei1y-beixker1y+keixber1y+kerxbei1y; (5)D=berxker1y-beixkei1y-kerxber1y+keixbei1y; (6)A1=bei1xkery+ber1xkeiy-ker1xbeiy-kei1xbery; (7)B1=bei1xkeiy-ber1xkery+ker1xbery-kei1xbeiy; (8)C1=berxkery-beixkeiy-kerxbery+keixbeiy; (9)D1=beixkery+berxkeiy-keixbery-kerxbeiy. (10) |
Зазначено, що berх-, beiх-, berу-, beiу-, – функції Кельвіна нульового і першого порядків від аргументів, узагальнених параметрів х і у, причому
, (11) , (12)а і b– зовнішній і внутрішній радіуси труби; f – частота змінення магнітного поля.
Зв’язок між параметрами х і у здійснюється виразом
, (13)де d – товщина стінки труби; тобто d=а–b.
Функції Кельвіна протабульовані у довідковій літературі. Тому можна знайти універсальні залежності фазового кута j та модуля параметра K від х при різних значеннях d/a для феромагнітних труб (з mr³50, практично важливий випадок). Ці залежності представлені на рис. 2 і 3.
Аналогічні залежності фазового кута j і модуля K від х для різних d/a були одержані при використанні немагнітних труб.
На основі універсальних функцій j=f(х) і K=f(х) можна розробити алгоритм сумісного визначення значень mr і s матеріалу трубчастих виробів. Цей алгоритм, який характеризує метод фіксованої частоти, заключається у наступному. При заданому зовнішньому радіусі а, відношення d/a і частоти зміни магнітного поля, вимірюють фазовий кут j, а по ньому, використовуючи залежність j від х (див. рис. 2) знаходять параметр х, і далі на основі функції K=f(х) при тому ж відношенні d/a визначають параметр K, а потім при знайденому параметрі х, і відомому коефіцієнті заповнення h, а також за виміряними значеннями ерс Е23 і Е03 знаходять з урахуванням (1) магнітний параметр виробу mr із співвідношення
Електропровідність виробу визначають на основі (11) з виразу
. (15)Формули (14) і (15) дають можливість визначити mr і s в послідовному циклі, тобто спочатку знайти mr, а далі s. У паралельному циклі величину mr знаходять із виразу (14), а s, використовуючи формулу
. (16)Паралельний цикл прискорює процес розрахунків mr і s, що важливо при автоматизації контролю. Окрім вказаних універсальних залежностей j і K від х, у роботі були введені інші удосконалені функції перетворення, тобто K=f(j) і Nх=K×х2=f(j), де Nх - параметр, який характеризує собою нормовану ерс Е23Н, обумовлену магнітним потоком всередині ТЕМП (де Е23Н=Е23/Е0). Ці дві функції дозволяють визначити значення mr і s за допомогою двох незалежних кривих: K=f(j) і Nх=f(j). Дійсно, після виміру в експерименті фазового кута j на основі функції K=f(j) для заданих d/a і а знаходять параметр K, а по ньому, виходячи із (14), визначають mr, а величину s розраховують із співвідношення