Смекни!
smekni.com

Базы данных и информационные технологии (стр. 24 из 28)

С другой стороны, в статистических системах запросы могут быть произвольно сложными (например, "выдать количество холостых особей мужского пола, проживающих в России и имеющих не менее трех зарегистрированных детей"), что вызывает необходимость использования развитых средств оптимизации запросов. С другой стороны, поскольку речь идет о статистике, здесь не требуется поддержка строгой сериализации транзакций и точного восстановления базы данных после сбоев. (Поскольку речь идет о статистической информации, потеря нескольких ее единиц обычно не существенна.)

Поэтому желательно уметь генерировать систему баз данных, возможности (и соответствующие накладные расходы) которой в достаточной степени соответствуют потребностям приложения. На сегодняшний день на коммерческом рынке такие "генерационные" системы отсутствуют (например, при выборе сервера системы Oracle вы не можете отказаться от каких-либо ненужных для вашего приложения его свойств или потребовать наличия некоторых дополнительных свойств). Однако существуют как минимум два экспериментальных прототипа - Genesis и Exodus.

Обе эти генерационные системы основаны прежде всего на принципах модульности и точного соблюдения установленных интерфейсов. По сути дела, системы состоят из минимального ядра (развитой файловой системы в случае Exodus) и технологического механизма программирования дополнительных модулей. В проекте Exodus этот механизм основывается на системе программирования E, которая является простым расширением Си++, поддерживающим стабильное хранение данных во внешней памяти. Вместо готовой СУБД предоставляется набор "полуфабрикатов" с согласованными интерфейсами, из которых можно сгенерировать систему, максимально отвечающую потребностям приложения.

Оптимизация запросов, управляемая правилами

В лекции 18 мы коротко рассмотрели проблемы оптимизации запросов, которые приходится решать в компиляторах языков баз данных. Возможно, главным выводом, который следовало бы сделать на основе материалов этой лекции, является то, что оптимизатор запросов - это наиболее громоздкий, сложный и критичный компонент СУБД. Все разработчики систем управления базами данных согласны с тем, что на оптимизации запросов экономить нельзя. Чем большее количество вариантов выполнения запроса анализируется и чем более точные оценки стоимости плана выполнения запроса применяются, тем более вероятно, что запрос будет выполнен эффективно.

Главная неприятность, связанная с оптимизаторами запросов, состоит в том, что отсутствует принятая технология их программирования. Обычно оптимизатор представляет собой аморфный набор относительно независимых процедур, которые жестко связаны с другими компонентами компилятора. По этой причине очень трудно менять стратегии оптимизации или качественно их расширять (делать это приходится, поскольку оптимизация вообще и оптимизация запросов, в частности, в принципе является эмпирической дисциплиной, а хорошие эмпирические алгоритмы появляются только со временем).

Каким же образом можно решать эту проблему? Имеются компромиссные решения, не выводящие за пределы традиционной технологии производства компиляторов. В основном все они связаны с применением тех или иных инструментальных средств, обеспечивающих автоматизацию построения компиляторов. Среди них отметим технологию, примененную Ричардом Столлманом в его семействе компиляторов gcc, а также инструментальный пакет Cocktail, разработанный в Германском университете города Карлсруе. Основным производственным достоинством gcc является применение единого языка в качестве средства внутреннего представления программы. Высокоуровневый лиспоподобный язык RTL используется на всех фазах компиляции gcc, что позволяет применять одни и те же преобразующие процедуры на разных стадиях оптимизации программы (вплоть до стадии машинно-зависимых оптимизаций).

В пакете Cocktail обеспечивается набор универсальных, настраиваемых процедур преобразования графов внутреннего представления программы. В некотором смысле Cocktail можно рассматривать как специализированный язык для написания компиляторов (компиляторов любых языков, а не только процедурных языков программирования или декларативных языков баз данных). Как утверждается, Cocktail позволяет повысить производительность труда разработчиков компиляторов в 2-3 раза.

Однако наиболее революционный подход среди известных автору был применен в экспериментальной постреляционной системе компании IBM Starburst. В некотором смысле этот подход является развитием идеи Столлмана, примененной при реализации широко популярного редактора Emacs. Напомним, что в основе этого редактора лежит интерпретатор расширенного диалекта языка Common Lisp. Сам этот интерпретатор написан на языке Си, а основная часть редактора написана на языке Лисп. Это позволяет, среди прочего, добавлять в редактор новые возможности, не покидая его среды: вы просто пишете новый текст на Лиспе и объявляете соответствующую функцию подключенной к редактору.

Система Starburst основана на применении продукционной системы. Эта система является, по существу, виртуальной машиной, в которой выполняются все компоненты СУБД, начиная от компилятора языка баз данных (расширенного варианта языка SQL) и заканчивая подсистемой непосредственного исполнения запросов. Сама СУБД представляет собой набор продукционных правил, каждое из которых вызывается продукционной системой при возникновении соответствующего события и выполняет некоторое действие, которое, в свою очередь, может привести к возникновению события, активизирующего другое правило. Правила представляются на специальном языке. Поддерживается набор предопределенных правил низкого уровня, обеспечивающих интерфейс с подсистемой управления внешней памятью (конечно, по соображениям эффективности эта подсистема написана не на продукционном языке).

Очевидно, что такая организация системы обеспечивает максимальную гибкость. Например, чтобы внедрить в оптимизатор запросов некоторую новую стратегию выполнения (например, расширить применяемый набор методов выполнения эквисоединения) достаточно дополнительно написать одно или несколько новых правил, связанных с событием требования выполнить соединение. Тем самым, Starburst может использоваться (и реально используется в научно-исследовательских лабораториях компании IBM) как мощное и гибкое средство исследования методов оптимизации запросов. Конечно, сомнительно, что технология, положенная в основу Starburst, позволит этой системе конкурировать с такими выполненными в традиционной манере коммерческими СУБД, как DB2, Oracle, Informix и т.д.

Поддержка исторической информации и темпоральных запросов

Обычные БД хранят мгновенный снимок модели предметной области. Любое изменение в момент времени t некоторого объекта приводит к недоступности состояния этого объекта в предыдущий момент времени. Самое интересное, что на самом деле в большинстве развитых СУБД предыдущее состояние объекта сохраняется в журнале изменений, но возможности доступа со стороны пользователя нет.

Конечно, можно явно ввести в хранимые отношения явный временной атрибут и поддерживать его значения на уровне приложений. Более того, в большинстве случаев так и поступают. Недаром в стандарте SQL появились специальные типы данных date и time. Но в таком подходе имеются несколько недостатков: СУБД не знает семантики временного поля отношения и не может контролировать корректность его значений; появляется дополнительная избыточность хранения (предыдущее состояние объекта данных хранится и в основной БД, и в журнале изменений); языки запросов реляционных СУБД не приспособлены для работы со временем.

Существует отдельное направление исследований и разработок в области темпоральных БД. В этой области исследуются вопросы моделирования данных, языки запросов, организация данных во внешней памяти и т.д. Основной тезис темпоральных систем состоит в том, что для любого объекта данных, созданного в момент времени t1 и уничтоженного в момент времени t2, в БД сохраняются (и доступны пользователям) все его состояния во временном интервале [t1,t2].

Исследования и построения прототипов темпоральных СУБД обычно выполняются на основе некоторой реляционной СУБД. Как и в случае дедуктивных БД темпоральная СУБД - это надстройка над реляционной системой. Конечно, это не лучший способ реализации с точки зрения эффективности, но он прост и позволяет производить достаточно глубокие исследования.

Примером кардинального (но, может быть, преждевременного) решения проблемы темпоральных БД может служить СУБД Postgres. Эта система была спроектирована и разработана М.Стоунбрекером для исследований и обучения студентов в университете г.Беркли, и он безбоязненно шел в ней на самые смелые эксперименты.

Главными особенностями системы управления памятью в Postgres являются, во-первых, то, что в ней не ведется обычная журнализация изменений базы данных и мгновенно обеспечивается корректное состояние базы данных после перевызова системы с утратой состояния оперативной памяти. Во-вторых, система управления памятью поддерживает исторические данные. Запросы могут содержать временные характеристики интересующих объектов. Реализационно эти два аспекта связаны.

Основное решение состоит в том, что при модификациях кортежа изменения производятся не на месте его хранения, а заводится новая запись, куда помещаются измененные поля. Эта запись содержит, кроме того, данные, характеризующие транзакцию, производившую изменения (в том числе и время ее завершения), и подшивается в список к изменявшемуся кортежу. В системе поддерживается уникальная идентификация транзакций и имеется специальная таблица транзакций, хранящаяся в стабильной памяти. Таким образом, после сбоев просто не следует обращать внимание на хвостовые записи списков, относящиеся к незакончившемся транзакциям. Синхронизация поддерживается на основе обычного двухфазного протокола захватов.