Смекни!
smekni.com

Базы данных и информационные технологии (стр. 4 из 28)

Пример 3. Для тех же отношений

и
, что и в предыдущем примере пересечение имеет вид:

Таблица 4 - Отношение A INTERSECT B

Табельный номер Фамилия Зарплата
1 Иванов 1000

Замечание. Казалось бы, что в отличие от операции объединения, потенциальные ключи могли бы наследоваться пересечением отношений. Однако это не так. Вообще, никакие реляционные операторы не передают результатирующему отношению никаких данных о потенциальных ключах. В качестве причины этого можно было бы привести тривиальное соображение, что так получается более просто и симметрично - все операторы устроены одинаково. На самом деле причина более глубока, и заключается в том, что потенциальный ключ - семантическое понятие, отражающее различимость объектов предметной области. Наличие потенциальных ключей не выводится из структуры отношения, а явно задается для каждого отношения, исходя из его смысла. Реляционные же операторы являются формальными операциями над отношениями и выполняются одинаково, независимо от смысла данных, содержащихся в отношениях. Поэтому, реляционные операторы ничего не могут "знать" о смысле данных. Трактовка результата реляционных операций - дело пользователя.

Примеры использования реляционных операторов

Пример 12. Получить имена поставщиков, поставляющих деталь номер 2.

Решение:

Пример 13. Получить имена поставщиков, поставляющих по крайней мере одну гайку.

Решение:

Ответ на этот запрос можно получить и иначе:


Пример 14. Получить имена поставщиков, поставляющих все детали.

Решение:

Пример 15. Получить имена поставщиков, не поставляющих деталь номер 2.

Решение:

Ответ на этот запрос можно получить и пошагово:

- получить список номеров всех поставщиков

- соединить данные о поставщиках и поставках

- в данных о поставщиках и поставках оставить только данные о поставках детали номер 2.

- получить список номеров поставщиков, поставляющих деталь номер 2.

- получить список номеров поставщиков, не поставляющих деталь номер 2.

- соединить список номеров поставщиков, не поставляющих деталь номер 2 с данными о поставщиках (получатся полные данные о поставщиках, не поставляющих деталь номер 2).

- искомый ответ (имена поставщиков, не поставляющих деталь номер 2).
Специальные реляционные операции

В этом подразделе мы несколько подробнее рассмотрим специальные реляционные операции реляционной алгебры: ограничение, проекция, соединение и деление.

Операция ограничения

Операция ограничения требует наличия двух операндов: ограничиваемого отношения и простого условия ограничения. Простое условие ограничения может иметь либо вид (a comp-op b), где а и b - имена атрибутов ограничиваемого отношения, для которых осмысленна операция сравнения comp-op, либо вид (a comp-op const), где a - имя атрибута ограничиваемого отношения, а const - литерально заданная константа.

В результате выполнения операции ограничения производится отношение, заголовок которого совпадает с заголовком отношения-операнда, а в тело входят те кортежи отношения-операнда, для которых значением условия ограничения является true.

Пусть UNION обозначает операцию объединения, INTERSECT - операцию пересечения, а MINUS - операцию взятия разности. Для обозначения операции ограничения будем использовать конструкцию A WHERE comp, где A - ограничиваемое отношение, а comp - простое условие сравнения. Пусть comp1 и comp2 - два простых условия ограничения. Тогда по определению:

· A WHERE comp1 AND comp2 обозначаеттожесамое, чтои (A WHERE comp1) INTERSECT (A WHERE comp2)

· A WHERE comp1 OR comp2 обозначаеттожесамое, чтои (A WHERE comp1) UNION (A WHERE comp2)

· A WHERE NOT comp1 обозначаеттожесамое, чтои A MINUS (A WHERE comp1)

С использованием этих определений можно использовать операции ограничения, в которых условием ограничения является произвольное булевское выражение, составленное из простых условий с использованием логических связок AND, OR, NOT и скобок.

На интуитивном уровне операцию ограничения лучше всего представлять как взятие некоторой "горизонтальной" вырезки из отношения-операнда.

Операция взятия проекции

Операция взятия проекции также требует наличия двух операндов - проецируемого отношения A и списка имен атрибутов, входящих в заголовок отношения A.

Результатом проекции отношения A по списку атрибутов a1, a2, ..., an является отношение, с заголовком, определяемым множеством атрибутов a1, a2, ..., an, и с телом, состоящим из кортежей вида <a1:v1, a2:v2, ..., an:vn> таких, что в отношении A имеется кортеж, атрибут a1 которого имеет значение v1, атрибут a2 имеет значение v2, ..., атрибут an имеет значение vn. Тем самым, при выполнении операции проекции выделяется "вертикальная" вырезка отношения-операнда с естественным уничтожением потенциально возникающих кортежей-дубликатов.

Операция соединения отношений

Общая операция соединения (называемая также соединением по условию) требует наличия двух операндов - соединяемых отношений и третьего операнда - простого условия. Пусть соединяются отношения A и B. Как и в случае операции ограничения, условие соединения comp имеет вид либо (a comp-op b), либо (a comp-op const), где a и b - имена атрибутов отношений A и B, const - литерально заданная константа, а comp-op - допустимая в данном контексте операция сравнения.

Тогда по определению результатом операции сравнения является отношение, получаемое путем выполнения операции ограничения по условию comp прямого произведения отношений A и B.

Если внимательно осмыслить это определение, то станет ясно, что в общем случае применение условия соединения существенно уменьшит мощность результата промежуточного прямого произведения отношений-операндов только в том случае, когда условие соединения имеет вид (a comp-op b), где a и b - имена атрибутов разных отношений-операндов. Поэтому на практике обычно считают реальными операциями соединения именно те операции, которые основываются на условии соединения приведенного вида.

Хотя операция соединение в нашей интерпретации не является примитивной (поскольку она определяется с использованием прямого произведения и проекции), в силу особой практической важности она включается в базовый набор операций реляционной алгебры. Заметим также, что в практических реализациях соединение обычно не выполняется именно как ограничение прямого произведения. Имеются более эффективные алгоритмы, гарантирующие получение такого же результата.

Имеется важный частный случай соединения - эквисоединение и простое, но важное расширение операции эквисоединения - естественное соединение. Операция соединения называется операцией эквисоединения, если условие соединения имеет вид (a = b), где a и b - атрибуты разных операндов соединения. Этот случай важен потому, что (a) он часто встречается на практике, и (b) для него существуют эффективные алгоритмы реализации.

Операция естественного соединения применяется к паре отношений A и B, обладающих (возможно составным) общим атрибутом c (т.е. атрибутом с одним и тем же именем и определенным на одном и том же домене). Пусть ab обозначает объединение заголовков отношений A и B. Тогда естественное соединение A и B - это спроектированный на ab результат эквисоединения A и B по A/c и BBC. Если вспомнить введенное нами в конце предыдущей главы определение внешнего ключа отношения, то должно стать понятно, что основной смысл операции естественного соединения - возможность восстановления сложной сущности, декомпозированной по причине требования первой нормальной формы. Операция естественного соединения не включается прямо в состав набора операций реляционной алгебры, но она имеет очень важное практическое значение.

Операция деления отношений

Эта операция наименее очевидна из всех операций реляционной алгебры и поэтому нуждается в более подробном объяснении. Пусть заданы два отношения - A с заголовком {a1, a2, ..., an, b1, b2, ..., bm} и B с заголовком {b1, b2, ..., bm}. Будем считать, что атрибут bi отношения A и атрибут bi отношения B не только обладают одним и тем же именем, но и определены на одном и том же домене. Назовем множество атрибутов {aj} составным атрибутом a, а множество атрибутов {bj} - составным атрибутом b. После этого будем говорить о реляционном делении бинарного отношения A(a,b) на унарное отношение B(b).