Consed собрание программ просмотра «изображает одну из пары как цветные линии, охватывающие соседние, изображая последние горизонтально ориентированными блоками. Этот дисплей визуально разделяет «последовательные» пары (те, которые предполагаемого размера и ориентации) путем построения их выше или ниже наборов генов считывания, которые связаны друг с другом перекрыванием их последовательностей, что позволяет выявить неправильную сборку (рисунок1а). Одно из преимуществ этого метода, является то, что он позволяет вести интерактивную фильтрацию отображаемых данных (наборов генов считывания, аналогичных последовательностей и т.д.). Несмотря на это у фильтрации есть одно ограничение, это то, что изображение может быстро портится, так как число пар увеличивается.
Например, в Consed иногда желательно отключать изображения всех согласованных пар внутреннего набора генов считывания, так как их количество перегружает изображение.
В дополнении к одной из пар последовательности сходство может быть использовано для выявления всевозможных генов считывания и для проверки выхода «окно сравнения наборов генов считывания». Аналогичные функции существуют и в других обрабатывающих программах обеспечения, например Gap4 присоединенный редактор наборов генов считывания. Эти предоставленные последовательности дополняющие обзор показывают, как Gap4 использует точечные графики, изображающие каждую из осей, которые указывают на позиции вдоль длины наборов генов считывания, и разделяет точки в местах совместимости выше границ подобной последовательности.
Пользователь может интерактивно исследовать последовательность взаимосвязи между различными наборами генов считывания и просматривать результаты поисковых операций, таких как «найти, повтор». Собрание изображений Consed может отображать выход утилита сравнения называемого «пара крестов», используя для этого связывание областей с подобной последовательностью между пользователем наборов генов считывания
Различные цвета означают такие функции как направление повторяющиеся из интернированных повторов. Одним из преимуществ просмотра сходства последовательностей в сборке изображения является возможность интегрирования считывания участков, которые могут выявлять неожиданно высокие регионы действия и часто указывают на аналогичные последовательности, которые были ошибочно разрушены и собраны в одну. Пользователь может выбрать для изучения последовательности сходства на основном уровне, и снова нажимая, изучает, то, что лежит в основе сообщения. Существуют также автономные инструменты функций, относящиеся например к Miropeats, широко используемые для ранних геномных проектов секвенирования.
UNIXC – оболочки, которые генерируют статистические картинки с использованием дуговых изображений для обозначения различных повторов.
Следующее поколение средств изображения последовательностей
Индивидуальное секвенирование геномов стало возможным и положило начало геномному проекту 1,000.Эти данные дают беспрецедентную возможность для характеристики видов человеческих генотипов, а также дают новое поколение вычислительных методов с появлением результата вычисления.
В некоторых случаях визуальная инспекция может способствовать оценки и интерпретации считывания согласованных методов и генетической изменчивости обнаружения вывода данных.
Ассемблирование изображает средства обладающими необходимыми функциями, но построенными по данным Сэнгер и первоначально существенно лучше считывающим обьем технологий NGS. Некоторые из этих средств в настоящее время модернизированы, для решения более сложных наборов данных существует Consed и обновленная Gap5, также разработана новая волна инструментов с учетом целей.
Например, Eagle View, Map View, IGV (таблица 1). В отличие от программного обеспечения эти средства, в первую очередь данные программ просмотра не предоставляют функции редактирования. Из-за их акцента на просмотре многие программы обеспечивают более гибкие возможности, а масштабирование позволяет пользователю свободно уменьшать изображение. Имеющаяся в продаже КГО геномика Workbench является особенно удобной для пользователя и включает в себя собственно считывание согласованных программ, которые могут быть запущены через GUL.
В контексте рессеквенции одна из пар дает ценную информацию о структурных изменениях, таких как вставка, удаление и инверсии. Как уже говорилось, в предыдущем разделе одна из пар может, указывать на неправильную сборку и пользователи могут выполнять обнаружение изменений по проекту ассемблирования и осведомлять об этих проблемах.
LookSeq и Gap5 используют вертикальную ось вращения и указывают размер вставки. Это разделяет одну из пар несовместимости на отдельные участки и визуально отделяет большие размеры вставок, которые предполагают включение результатов. При анализе структурных изменений, важно рассматривать аннотацию генов, например, приводят ли изменения к синонимам или нонсенсам в аминокислотах.
По этой причине некоторые из визуализирующих средств и некоторые законченные программы обеспечения помогают пояснением процессов на дисплее.
Consed служит примером на дисплее согласованной трансляции аминокислот во всех шести считываниях фреймах и позволяет пользователю аннотировать генотипы, повторы и определять гены.
Проблемы NGS и большой объем данных, создают вычислительные и представительные проблемы. Новые форматы файлов на пример выравнивание последовательности (карты SAM) форматы, принятые в 1,000 Геномном проекте, а также компактные форматы выравнивания. CALFобеспечивает компактное хранение данных считывания выравниваний.
Предындексанция, например файлов ВАМ (спутник бинарное представление SAM) – все шире используется для достижения быстрого поиска, случайно согласованных данных и уменьшает требования к памяти интерактивных выравниваний. Например, большинство считываний выравнивания изображений представляет считывание всех доступных файлов с использованием сортировки или колоризации в качестве руководства пользователя.
Тем не менее, это представление разрушается, когда происходит сотни и тысячи считываний карт в одном месте.
Пользователи нуждаются в суммарных методах, которые считывают базы и особенность выравнивания, для того, чтобы получить общий обзор, а также интерактивный доступ к основным востребуемым данным.
Кроме того, современное собрание NGS программ на основе графиков де Брейна производит связывание наборов генов считывания информации, которое может стать комплексом. Ассемблирование графических изображений в том и числе интерактивных изображений появляется для тог, чтобы обеспечить более высокий уровень визуализации собранной структуры.
Часть возможностей ассемблирования обрабатывающих программ обеспечения позволяет мгновенную интеграцию и анализ операций с визуализацией поиска. Последовательность поиска в результате динамической визуализации выравнивания представляет единственный подобный пример. Кроме того, эффективность работы пользователя может быть значительно улучшена путем предоставления рекомендаций, где искать. Например, пользователь может перейти к следующей области «низкого качества согласованности», используя навигационное меню Consed вместо того, чтобы вручную определять расположение. Достижения такого рода интеграции между визуальным и компьютерным анализом будет иметь важное значение в растущей потребности анализа данных.
Просмотр генов
Конечным продуктом секвенирования генома, сборки и обработки циклов являются высокосмежные последовательности, в котором большинство наборов генов имеют длины, что на порядок больше, чем при считывании. Как может исследователь управлять этой последовательностью и обнаруживать интересующие в ней области.
Последовательность содержит справочную систему координат и природную платформу, на которой собираются научные аннотации и геном отображается набором данных из различных источников.
Геномы браузеров были изначально разработаны для отображения данных на ранних собраниях проектов, таких как Элеганс геном и позднее на других модельных организмах (например, в Университете Калифорнийском Санта Круз, UCSC геномный браузер, Ассамблеи геномного браузера и NCBI карт изображений). Эти браузеры имеют много функций и их основные различия были рассмотрены в другом месте. Сегодня браузеры стали стандартными инструментами для изучения геномов, облегчают анализ геномной информации и обеспечивают общую платформу для исследований, обеспечивают хранение и публикацию научных открытий (таблица 2).
Геномный браузер в двух словах
В общем, геномные браузеры отображают данные и биологические аннотации из многих источников, в их геномном контексте, в рамках графического интерфейса. Эти инструменты поддерживают различные типы данных, включая экспрессию генов, вариации генотипов, межвидовые сравнения и многое другое.
Аннотации функционально важных областей, таких как расположение генов, в регионах с транскрипционной активностью и регуляторных элементов, либо вытекают из экспериментальных результатов (например, интерпретация последовательностей) JavaScript или моделирование (например, прогнозирование генной модели). И данные и аннотации организованы из « треков», которые могут быть предварительно загружены в геном браузера или загружены по требованию.
Исследователи часто хотят изучать особенности регионов, которые их интересуют, а все нынешние браузеры геномов позволяют пользователю выбирать конкретные места для показа генома.
Большинство инструментов обеспечивают возможность для поиска последовательностей и для конкретной геномной аннотации, (такой как генные имена), которые находятся в основе базы данных.