Смекни!
smekni.com

Иерархическое управление большими системами (стр. 2 из 5)

Опишем процедуру декомпозиции задачи на отдельные подзадачи, которые содержат задачи первого уровня. Второй уровень решения управляет первым, опираясь на правило уравновешенного взаимодействия. С точки зрения математики, это многоуровневую формулировку можно записать с помощь параметра веса

, который определяет штраф системы, где не сбалансировано взаимодействие. Целевая функция примет вид:

(4.2.11)

где

– вектор параметров веса (положительных и отрицательных), которые изменяют целевую функцию в зависимости от разности y-z. Введем переменную z, тогда решение системы примет вид:

(4.2.12)

(4.2.13)

Набор допустимых системных переменных определяется так:

(4.2.14)

Целевая функция минимизируется посредством S0:

(4.2.15)

Приняв за штраф

и учитывая (4.2.11)-(4.2.13) , задача первого уровня формулируется как:

Подсистема 1:

(4.2.16)

(4.2.17)

Подсистема 2:

(4.2.18)

(4.2.19)

Второй уровень управляет согласованием переменной

, исходя из невязки по выходу:

(4.2.20)

Из задачи второго уровня ясно, что согласующей переменной х управляют до тех пор, пока ошибка е не достигнет нуля, т.е. баланс взаимодействия поддерживается посредством целевой функции задач первого уровня (4.2.16) и (4.2.18) и через переменную

, отсюда и название – согласование цели. На рис 4.4 изображено двухуровневое решение через согласование цели. Читатель может сравнить схемы 4.4 и 4.5.

Позже мы увидим, что переменную согласования а можно истолковать как вектор управления Лагранжа и задачу второго уровня можно решить через хорошо известные итеративные поисковые алгоритмы, такие как метод градиента, Ньютона и скоростного градиента.

4.3 Иерархическое управление линейными системами.

В этом разделе формулировка согласования цели для многоуровневых систем применяется к большим линейным непрерывным системам в контексте управления по разомкнутому циклу. Кроме подхода с балансом взаимодействия обсуждается так же другая схема, известная как метод наблюдения взаимодействия.

Пусть большая динамическая взаимосвязанная система представлена в виде следующего уравнения состояния:

(4.3.1)

где х и u – это векторы состояния (nxl) и управления (mxl). Принято считать, что система может быть разложена на N взаимосвязанных подсистем si, i=1,…,N, и управление состояния i-й подсистемы может быть представлено как:

, (4.3.2)

где x, u, xi, ui – имеют размерность n, m, ni, mi, соответственно, а gi – представляет взаимосвязи в i-й подсистеме, и:

(4.3.3)

(4.3.4)

Задачей оптимального управления является поиск управляющих векторов u1,…,uN, таких, что оценочная функция

(4.3.5)

минимизирует объект (4.3.1) и подходящая область:

(4.3.6)

Учитывая возможность декомпозиции системы (4.3.1) на N соединенных подсистем (4.3.2), можно разложить ценовую функцию (4.3.6) и взаимосвязи gi(x,t) (4.3.2), как:

(4.3.7)

(4.3.8)

(4.3.9)

где zi – вектор содержащий линейную (или нелинейную) комбинацию состояний N подсистем. Исходя из описанных предположений, задача оптимального управления большой системой может быть записана как:

(4.3.10)

(4.3.11)

(4.3.12)

(4.3.13)

Эта проблема, известная как иерархическое управление, была решена двухуровневой оптимизацией статистической задачи в предыдущем параграфе. Применение двухуровневого согласования цели для больших линейных систем описано далее.


4.3.1 Двухуровневое согласование линейных систем

Рассмотрим большую линейную стационарную систему:

(4.3.14)

Система может быть декомпозирована как:

(4.3.15)

где вектор взаимодействия (kxl), записанный как:

(4.3.16)

это линейная комбинация состояний N-1 подсистем, и Gij – это матрица nixnj. Первоначальная задача оптимального управления системой сводится к оптимизации N подсистем, которые удовлетворяют (4.3.15)-(4.3.16) и минимизируют:

(4.3.17)

где Qi – это неотрицательно определенная матрица nixni, Ri и Vi – это положительно определенные матрицы mixmi и kixki , где

(4.3.18)

Физическая интерпретация последнего слагаемого в интеграле (4.3.17) – это неточность в данной точке. Фактически, определяя это слагаемое, как будет видно дальше, мы избегаем выраженных управлений. «Согласование цели» и «баланс взаимодействия» использованные у Mesarvic и др. (1970), так же известны как задача «linear-quadratic» у Pearson (1971) и передача у Singh (1980) и Jamshidi (1983).

В этой декомпозиции большой взаимосвязанной линейной системы общие коэффициенты связи между ее N подсистемами – это переменная взаимосвязи zi(t), которые, вместе с (4.3.15)-(4.3.16), образуют ограничение связи. Эта формулировка называется глобальной и обозначается SG. Можно сделать следующее допущение. Глобальная проблема SG заменяется группой N подзадач, соединенных вместе через вектор параметров a=(a1,…,aN) и обозначенных si(a), i=1,…,N. Другими словами, глобальная системная задача SG включена в группу подсистемных проблем si(a) через внутренний параметр (Sandell и др., 1978) таким образом, что для определенного значения a*, подсистемы Si(a*), и i=1,…,N, дают желаемое решение для SG. Используя обозначения иерархического управления, эта внутренняя идея это и есть понятие согласования, но используя терминологию математического программирования задач, она называется основной проблемой (Geoffrion, 1970). На рисунке 4.6 изображена двухуровневая структура управления большой системой. Под этой стратегией, на i-й итерации каждый местный контроллер i получает

от координатора (второй уровень иерархии), решает
и передает (сообщает) некоторую функцию
этого решения координатору.

Координатор, в свою очередь, оценивает следующее значение

, т.е.:

(4.3.19)

где ei – это l-й размер шага итерации, и новый компонент dl, как мы вскоре увидим, часто берется за функцию ошибка взаимодействия:

(4.3.20)

Внутреннюю переменную взаимодействия zi(*) в (4.3.20) можно считать частью управляющей переменной доступной для контроллера i, в этом случае вектор параметра a(t) является набором двойных переменных или множителем Лагранжа, который соответствует ограничениям уравнения взаимодействия (4.3.16). Фундаментальная идея, которая стоит за этим подходом должна преобразовать задачу поиска минимума первоначальной системы в более легкую задачу поиска максимума, решение которой можно получить посредством двухуровневой итеративной схемы. Которая обсуждалась выше.

Введем двойную функцию

(4.3.21)

к объекту (4.3.15), где Лагранжиан L(*) определен как:

(4.3.22)

где вектор параметра а состоит из k множителей Лагранжа. Таким образом, первоначально ограниченная (взаимодействием подсистем) оптимизационная задача превращается в неограниченную, другими словами ограничение (4.3.16) удовлетворяется через определение набора множителей Лагранжа ai, i=1,…,k. В таких случаях, когда функции ограничений выпуклые, теорема сильной двойственности Лагранжа (Geoffrion, 1971a, b; Singh, 1980) показывает, что