Смекни!
smekni.com

Имитационное моделирование работы вычислительного центра (стр. 1 из 2)

Курсовой проект

ИМИТАЦИОННОЕ МОДЕЛИРОВАНИЕ РАБОТЫ ВЫЧИСЛИТЕЛЬНОГО ЦЕНТРА

Введение

Моделирование – один из способов исследования и устранения проблем, возникающих в окружающем нас мире. Говоря более строго, модель является реальным или абстрактным объектом, который заменяет (представляет) объект исследования в процессе его изучения, находится в отношении сходства с последним (аналогия, физическое подобие и т.п.) и более удобен для экспериментов. Наиболее естественная и важная сфера применения моделирования – анализ сложных систем, в том числе социотехнических (производственных, финансовых и т.д.).

Традиционно различают аналитическое и имитационное моделирование.

Аналитическая модель, как правило, статическая (ее выходы функционально зависят от входов) и поэтому в ряде практических случаев может быть реализована даже с помощью электронных таблиц.

К имитационным моделям прибегают тогда, когда объект моделирования настолько сложен, что адекватно описать его поведение математическими уравнениями невозможно или затруднительно. Имитационное (динамическое) моделирование рассматривает модель как совокупность правил (дифференциальных уравнений, конечных автоматов, сетей Петри и т.п.), которые определяют, в какое состояние в будущем перейдет моделируемый объект из некоторого предшествующего состояния.

Сложные функции моделирующего алгоритма могут быть реализованы средствами универсальных языков программирования (Паскаль, Си), что предоставляет неограниченные возможности в разработке, отладке и использовании модели. Однако подобная гибкость приобретается ценой больших усилий, затрачиваемых на разработку и программирование весьма сложных моделирующих алгоритмов, оперирующих со списковыми структурами данных. Альтернативой этому является использование специализированных языков имитационного моделирования

Дискретно-событийное моделирование обязано своим рождением Дж. Гордону, который в начале 1960-х спроектировал и реализовал на мэйнфреймах IBM систему GPSS. Основной объект в этой системе – пассивный транзакт (заявка на обслуживание), который может определенным образом представлять собой работников, детали, сырье, документы, сигналы и т.п. «Перемещаясь» по модели, транзакты становятся в очереди к одноканальным и многоканальным устройствам, захватывают и освобождают эти устройства, расщепляются, уничтожаются и т.д. Таким образом, дискретно-событийную модель можно рассматривать как глобальную схему обслуживания заявок. Аналитические результаты для большого количества частных случаев таких моделей рассматриваются в теории массового обслуживания.

Сегодня существует целый ряд инструментов, поддерживающих такой подход в моделировании: GPSS/PC, GPSS/H, GPSSWorld, ObjectGPSS, Arena, SimProcess, EnterpriseDynamics, Auto-Mod и др.

GPSSWorld– типичный современный представитель GPSS-семейства, реализованный для работы в среде MSWindows. Наличие встроенных инструментов статистической обработки результатов моделирования, встроенного языка программирования расчетов PLUS и др. позволяет создавать средствами GPSSWorld не только простые обучающие модели, но и более полезные приложения. Однако следует заметить, что GPSS/PC и Simpas предназначены для работы в операционной системе MS-DOS. Поэтому имеются ограничения, которые в ряде случаев не позволяют осуществить разработку и эксплуатацию моделей сложных систем с требуемой степенью детализации.

Отмеченных недостатков практически не имеет новая общецелевая система моделирования GPSSWorld, разработанная компанией Minuteman (США). Эта система является развитием GPSS/PC, но приобрела комбинированный характер, т.е. может моделировать как дискретные, так и непрерывные процессы. Эти возможности обеспечиваются как новыми объектами языка GPSS, так и включёнными в состав GPSSWorld языка Plus – языка программирования низкого уровня. Этот язык сделал GPSSWorld более открытой системой и позволяет взаимодействовать с другими приложениями, а также создавать пользователями свои библиотеки процедур. Язык Plus вместе с другими инструментальными средствами GPSSWorld позволил автоматизировать весь цикл исследований от разработки моделей до выработки рекомендаций за счёт новых функций планирования экспериментов и обработки статистики. Наконец, GPSSWorld работает в операционной системе Windows и максимально ориентирована на использование современных технологий, обеспечивающих высокую интерактивность и визуальное представление информации.

Несмотря на изначальную ориентацию GPSS на моделирование систем массового обслуживания, система оказалась удивительно долгоживущей и способной к развитию. Трудоемкость описания моделируемых систем в терминах бизнес-процессов может быть снижена за счет применения таких продуктов, как ObjectGPSS или ISS 2000. В частности, созданный в НТУУ «КПИ» под руководством В.Н. Томашевского пакет ISS 2000 представляет собой лингвистический процессор, с помощью которого пользователь в диалоговом режиме создает автоматически GPSS-программу и запускает ее на выполнение.


1. Анализ и формализация задачи моделирования

На вычислительный центр через 300±100 с. поступают задания длиной 500±200 байт. Скорость ввода, вывода обработки заданий 100 байт/мин. Задания проходят последовательно ввод, обработку и вывод, буферируясь перед каждой операцией. После вывода 5% заданий оказываются выполненными неправильно вследствие сбоев и возвращаются на ввод. Для ускорения обработки задания в очередях располагаются по возрастанию их длины, т.е. короткие сообщения обслуживают в первую очередь. Задания, выполненные неверно, возвращаются на ввод и во всех очередях обслуживаются первыми.

Смоделировать работу вычислительного центра в течение 30 ч. Определить необходимую емкость буферов и функцию распределения времени обслуживания заданий.

1.1 Построение концептуальной модели объекта

На первом этапе проведения моделирования необходимо построить концептуальную модель (Рис. 1), т.е. концептуальная (содержательная) модель – это абстрактная модель, определяющая структуру моделируемой системы, свойства ее элементов и причинно-следственные связи, присущие системе и существенные для достижения цели моделирования, а затем провести формализацию её в виде Q-схемы, т.е. перейти от словесного описания объекта моделирования к его математической модели. Наиболее ответственными моментами на этом этапе является упрощение описания системы, т.е. отделение собственно системы от внешней среды и выбор основного содержания модели путём отбрасывания всего второстепенного с точки зрения поставленной цели моделирования.

Схема модели изображена на рисунке 1.


Концептуальная структура модели представляет собой модель системы массового обслуживания (СМО), в которой каждое задание проходит несколько этапов.

1.2 Формализация модели в виде Q-схемы

В качестве единицы измерения времени выберем секунду. В качестве единицы измерения задания – байт. Построим Q-схему:

Q-схема – трехфазная, одноканальная. СМО с неограниченной очередью, обслуживание с относительным приоритетом, система разомкнутая.

Где:

И – источник заданий,

Н – буфер, очередь заявок в накопителе,

К – канал, обслуживание заявок, имеет клапан 1 – канал занят, 0 – канал свободен.

Поток заявок неоднородный по размеру и приоритету.

В данной главе мы проанализировали техническое задание курсового проекта, построили концептуальную структуру нашей модели и отобразили логику работы модели на Q-схеме.

2. Построение имитационной модели

2.1Создание блок-схемы имитационной модели


2.2Представление базовой исходной имитационной модели

Листинг программы

1 input equ 1

2 obr equ 2

3 output equ 3

4 tdl equ 4

5 tpr equ 5

6 tvr equ 9

7 och1 equ 6

8 och2 equ 7

9 och3 equ 8

10 tdl fvariable (RN1/999)#400+300; Размерзадания

11 tvr fvariable P1#60/100; Времяобработкизадания

12 tprfvariable (700-P1)/400#127; Определение приоритета

13 simulate

14 generate 300,100; Интервал появления транзактов

15 assign 1, v$tdl; Задать 1 параметр транзакта

16 assign 2, v$tvr; Задать 2 параметр транзакта

17 priorityv$tpr; Задать приоритет транзакта

18 Met1 queueoch1,1; Работа первого ОКУ

19 seize input

20 depart och1,1

21 advance P2

22 release input

23 Met2 queueoch2,1; Работа второго ОКУ

24 seize obr

25 depart och2,1

26 advance P2

27 release obr

28 Met3 queueoch3,1; Работа третьего ОКУ

29 seize output

30 depart och3,1

31 advance P2

32 release output

33 priority 127; Задать самый высокий приоритет

34 transfer.95, Met1, OUT ; 5% отправляем в первую ОКУ

35 OUT terminate

36 generate 108000; Задаемвремяработымодели

37 terminate 1

38 start 1

3. Исследование экономических процессов

Результатымоделирования:

GPSS World Simulation Report – Untitled Model 1.47.1

ОБЩАЯ ИНФОРМАЦИЯ О РЕЗУЛЬТАТАХ РАБОТЫ МОДЕЛИ:

Thursday, November 04, 2010 21:53:09

START TIME END TIME BLOCKS FACILITIES STORAGES

0.000 108000.000 24 3 0

Начальное время 0, Время моделирования 108000 (30 часов*60 минут*60 секунд).

Количество блоков в модели 24, количество устройств 3.

ИНФОРМАЦИЯ ОБ ИМЕНАХ:

Имена устройств и числовые значения им присвоенные:

NAME VALUE

INPUT 1.000

MET1 5.000

MET2 10.000

MET3 15.000

OBR 2.000

OCH1 6.000

OCH2 7.000

OCH3 8.000

OUT 22.000

OUTPUT 3.000

TDL 4.000

TPR 5.000

TVR 9.000

ИНФОРМАЦИЯОБЛОКАХ:

LABEL LOC BLOCK TYPE ENTRY COUNT CURRENT COUNT RETRY

1 GENERATE 359 0 0

2 ASSIGN 359 0 0

3 ASSIGN 359 0 0

4 PRIORITY 359 0 0

MET1 5 QUEUE 382 19 0

6 SEIZE 363 0 0

7 DEPART 363 0 0

8 ADVANCE 363 1 0

9 RELEASE 362 0 0

MET2 10 QUEUE 362 1 0

11 SEIZE 361 0 0

12 DEPART 361 0 0

13 ADVANCE 361 1 0

14 RELEASE 360 0 0

MET3 15 QUEUE 360 1 0

16 SEIZE 359 0 0

17 DEPART 359 0 0

18 ADVANCE 359 1 0

19 RELEASE 358 0 0

20 PRIORITY 358 0 0

21 TRANSFER 358 0 0

OUT 22 TERMINATE 335 0 0

23 GENERATE 1 0 0

24 TERMINATE 1 0 0

BLOCKTYPE– тип блока

ENTRYCOUNT – количество транзактов входивших в блок