Смекни!
smekni.com

Использование нечёткой логики в системах автоматического управления (стр. 3 из 3)

Главной задачей управления процессом подачи реагентов является максимальное извлечение ценного металла в концентрат. Содержание ксантогената во флотационной пульпе колеблется от 0,5 – 1 мг/л до 15 - 20 мг/л. Для многих условий оптимальной считается вполне определенная концентрация ксантогената в пульпе. Между расходом ксантогената и его концентрацией прослеживается четкая зависимость (рис.4)[6]. Для условий Красноуральской обогатительной фабрики экспериментально установлена оптимальная концентрация ксантогената со значением 5,5 мг/л. При снижении концентрации увеличивается содержание меди в хвостах, а увеличение приводит к необходимости осуществления дополнительных мероприятий по очистке сточных вод ОФ.

Дозирование ксантогената осуществляется комбинированной САУ по расходу твердого Qт на входе с корректировкой по концентрации ионов ксантогената в пульпе. Однако непосредственное оперативное измерение концентрации ксантогената на должном уровне осуществить невозможно вследствие того, что относительная погрешность средств измерения концентрации составляет 10%.

Благодаря тому, что существует нелинейная зависимость между расходом ксантогената и его концентрацией и, используя знания экспертов, можно применить аппарат нечеткой логики.

Следует уточнить, что задачей корректирующего контура является сообщение основному контуру относительного расхода реагента.

Концентрационное состояние флотомашины будет характеризоваться лингвистической переменной «Концентрационный режим», которая в зависимости от значения концентрации ксантогената в пульпе может принимать три вербальных значения, т.е. термы: «Недопитка» (НП), «Нормальный режим» (НР), «Перепитка» (ПП). Использовать большое число значений, например дополнительную нечеткую переменную «Сильная перепитка», нецелесообразно, т.к. для ЛПР это, вероятно, будет эквивалентно в данных условиях термину «ПП», что внесет лишь дополнительную неопределённость на стадии экспертного опроса. Непрерывные кусочно-линейные функции принадлежности нечетких множеств «НП» СНП, «Н» СН и «ПП» СПП, построенные на интервале 1,5…9,5 мг/л, представлены на рисунке 5.

Возможные управляющие решения по количеству подаваемого в процесс ксантогената ограничены в зависимости от конкретной ситуации тремя управляющими воздействиями из терм-множества RК «Расход ксантогената»: «Уменьшить подачу (УМ)», «Не изменять (НИ)», «Увеличить подачу (УВ)». Непрерывные кусочно-линейные аппроксимированные функции принадлежности нечётких множеств, задающих на абсолютной оси значения управляющих решений, изображены на рисунке 6. Диапазон изменения относительного расхода ксантогената ограничен интервалом 42…118 г/т. Максимальное значение функции принадлежности нечёткого множества «НИ» достигается на отметке 80 г/т.

Для каждого терма «УМ», «НИ», «УВ» лингвистической переменной «Расход ксантогената» соответственно определены матрицы МУМ, МНИ и МУВ, описывающие силу воздействия соответствующих управляющих решений (рисунок 7, а…в). Например, на рисунке 7, в изображена матрица МУВ, характеризующая управляющее решение «УВ». Из анализа матрицы видно, что если объект управления имел значение «НП», то в результате управляющего воздействия он со степенью уверенности 0,2 будет иметь прежнее значение, со степенью 0,8 – значение «Н» и со степенью уверенности 0,4 – «ПП».

Ситуация, в которую желательно перевести объект, т. е. целевая ситуация, определяется исходя из анализа степеней предпочтения управляющих решений. Степени предпочтения последних зависят от конкретной ситуации и задаются как продукционная система (набор правил) «ситуация – предпочтение решений».

На основании экспертного опроса составляется следующая система:

1) если лингвистическая переменная имеет значение «НП», то степени предпочтения управляющих решений составляют:

a (УМ) = 0; a (НИ) = 0,5; a (УВ) = 1;

2) если значение лингвистической переменной «Н», то

a (УМ) = 0,4; a (НИ) = 1; a (УВ) = 0,4;

3) если лингвистическая переменная имеет значение «ПП», то

a (УМ) = 1; a (НИ) = 0,2; a (УВ) = 0.

При этом степень предпочтения каждого вида управляющего решения в конкретной ситуации определяется как конъюнкция степени применения того или иного правила и заданных в них степеней предпочтения управляющих решений. Результирующие степени предпочтения применения управляющих решений принимаются равными максимальным среди соответствующих степеней предпочтения по каждому значению признаков «УМ», «НИ», «УВ».

Рассмотрим процедуру поиска управляющего решения на основе алгоритмов нечеткого ситуационного вывода[2].

По рисунку 5 идентифицируем текущую ситуацию, в которой находится объект. Например, имеет место ситуация s0 = {á0,6/НПñ,á0,4/Нñ}.

1) Определяем степени предпочтения каждого управляющего решения «УМ», «НИ», «УВ». Они соответственно равны

a (R1,s0) = 0,4; a (R2,s0) = 0,5; a (R3,s0) = 0,6.

Выбираем управляющее решение R3 «УВ» как имеющее наибольшую степень предпочтения.

2) Моделируем принятие выбранного управляющего решения R3. Для этого выполняется композиция нечетких значений признаков в ситуации s0 и нечетких отношений, задающих силу воздействия управления R3 (рисунок 7, в). В результате получаем ситуацию s03 = {á0,2/НПñ,á0,6/Нñ, á0,4/ППñ}.

3) Находим величину требуемого управляющего воздействия. Сначала определяем нечеткое отношение М, для этого вычисляем декартово произведение s0 ´s03 и строим матрицу нечетких управляющих решений, которая представлена на рисунке 8.

4) Раскладываем полученное управляющее решение в базисе {«УМ», «НИ», «УВ»}. Для этого необходимо определить нечеткое множество

RJ = {áμR(УМ)/ УМ ñ,áμR(НИ)/ НИ ñ,áμR(УВ)/ УВñ}.

Для определения коэффициентов μR(УМ), μR(НИ), μR(УВ) следует вычислить степени включения отношения М в отношения МУМ , МНИ, МУВ. Управляющее решение в нечетком виде выглядит следующим образом:

RJ = {á0,4/ УМ ñ,á0,4/ НИ ñ,á0,6/ УВñ}.

5) Проводим дефаззификацию - определяем количественное значение управляющего решения. Для этого необходимо построить объединение конъюнкций нечетких множеств, задающих термы «УМ», «НИ», «УВ», со степенями принадлежности этих термов нечеткому множеству RJи найти центр площади полученной фигуры (рисунок 6), т.е. применить метод «центральной точки». Верхняя огибающая, соответствующая объединению полученных множеств, показана пунктирной линией. Перпендикуляр, построенный в точке 86 г/т, делит площадь фигуры пополам. Это означает, что значение 86 г/т является количественным выражением нечеткого управляющего решения.

Следовательно, при возникновении рассмотренной в примере нечеткой ситуации, надо увеличить относительный расход ксантогената до 86 г/т.

Техническая реализация данной системы дозирования ксантогената может быть осуществлена с помощью микропроцессорного программируемого контроллера OmronC 200 H с блочно-модульной архитектурой. Корректирующий контур реализуется в модуле нечеткой логики, который выдает сигнал, пропорциональный величине относительного расхода, в модуль ПИД – регулирования, где и формируется управляющее воздействие для дозатора ксантогената.

Заключение

Можно сделать следующий вывод: ключ к успешному внедрению нечеткой логики в промышленную автоматизацию – в умелом сочетании её с традиционными средствами. Нечеткая логика не заменяет обычной техники управления, а дополняет её высокоэффективной методологией реализации стратегий многосвязного управления. Таким образом, основной потенциал нечеткой логики лежит в сфере реализации функций диспетчерского управления.


Список литературы

1. Заде Л. Понятие лингвистической переменной и его применение к принятию приближенных решений. М.: Мир,1976.

2. Мелихов А.Н., Бернштейн Л.С., Коровин С. Я. Нечеткие. Ситуационные советующие системы с нечеткой логикой. М.: Наука, 1990.

3. Нечеткие множества и теория возможностей. Последние достижения: Пер. с англ./ Под ред. Р. Р. Ягера. М.: Радио и связь, 1986.

4. Топчаев В. П. Шапировский М. Р. Гульдин В. И. Оптимальное управление процессом очистки стоков промышленных предприятий методом гальванокоагуляции // Цветные металлы. 1995. № 9.

5. Троп А. Е., Козин В. З., Прокофьев Е. В. Автоматическое управление технологическими процессами обогатительных фабрик: Учебник для вузов. – 2-е изд., перераб. и доп. – М.: Недра, 1986.

6. Троп А. Е., Козин В. З., Аршинский В. М. Автоматизация обогатительных фабрик. М.: Недра, 1970.


ПРИЛОЖЕНИЕ А


Рисунок 1- Алгебраический базис Рисунок 2 - Максминный базис

Рисунок 3 – Ограниченный логический базис.

Рисунок 4 – Зависимость между расходом и концентрацией ксантогената.


Рисунок 5 - Функции принадлежности нечетких множеств СНП, СН, СПП

Рисунок 6 - Функции принадлежности нечетких множеств «УМ», «НИ», «УВ»

а) МУМ =

НП Н ПП
НП 1 0 0
Н 0,8 0,3 0
ПП 0,8 1 0

б) МНИ =

НП Н ПП
НП 1 0 0
Н 0 1 0
ПП 0 0 1

в )

НП Н ПП
НП 0,2 0,8 0,4
Н 0 0,3 0,8
ПП 0 0 1

МУВ =

Рисунок 7 - Матрицы нечетких управляющих решений.

НП Н ПП
НП 0,2 0,8 0,4
Н 0 0,3 0,8
ПП 0 0 1

М=

Рисунок 8 - Матрица нечетких управляющих решений.