Т-переход ("исполнение", "простой переход"). Его графическое представление аналогично представлению вершины-перехода сети Петри (рис.4, слева). Переход срабатывает при наличии метки во входной позиции и отсутствии ее в выходной позиции. Формально это можно записать так:
(1; 0) | - (0;1).
Т-переход позволяет отразить в модели занятость некоторого устройства (подсистемы) в течение некоторого времени, определяемого параметром t (d). F-nepexod ("разветвление"). Графическое представление приведено на рис.4 в центре. Срабатывает при тех же условиях, что и Т-переход:
С содержательной точки зрения, F-переход отображает разветвление потока информации (транзактов) в системе.
Рис.4. Графическое представление переходов Е-сети - Т-переход (слева), F-переход (в центре), J-переход (справа) J-переход ("объединение"). Графическое обозначение показано на рис.4 справа. Переход срабатывает при наличии меток в обеих входных позициях и отсутствии метки в выходной позиции: (1,1; 0) | - (0,0;1)
Он моделирует объединение потоков или наличие нескольких условий, определяющих некоторое событие.
Х-переход ("переключатель"). По сравнению с тремя предыдущими типами переходов, он содержит дополнительную управляющую ("разрешающую") позицию, которая графически обозначается обычно либо квадратиком, либо шестиугольником (рис.5, слева). Рис.5. Графическое представление переходов Е-сети, имеющих разрешающую позицию - Х-переход.
Рис.5. Графическое представление переходов Е-сети, имеющих разрешающую позицию - Х-переход (слева), Y-переход (справа)
Логика его срабатывания задается следующими соотношениями:
Х-переход изменяет направление потока информации (транзактов). В общем случае разрешающая процедура может быть сколь угодно сложной, но сущность ее работы заключается в проверке выполнения условий разветвления потока (с точки зрения программиста, разрешающая позиция аналогична условной инструкции типа if).
Y-переход ("выбор", "приоритетный выбор"). Этот переход также содержит разрешающую позицию (рис.5, справа). Логика срабатывания Y-перехода:
Y-переход отражает приоритетность одних потоков информации (транзактов) по сравнению с другими. При этом разрешающая процедура может быть определена различным образом: как операция сравнения фиксированных приоритетов меток; как функция от атрибутов меток (например, чем меньше время обслуживания, тем выше приоритет). В некотором смысле он работает аналогично инструкции выбора типа case. [12]
Еще раз подчеркнем, что в Е-сети все переходы обладают свойством безопасности. Это означает, что в выходных позициях (которые, в свою очередь, могут быть входными для следующего перехода) никогда не может быть более одной метки. Вместе с тем, в Е-сетях существуют понятия макроперехода имакропозиции, которые позволяют отображать в модели процессы накопления обслуживаемых транзактов в тех или иных узлах системы, а также расширить логические возможности Е-сетей.
Рассмотрим некоторые из них.
Макропозиция очередьпредставляет собой линейную композицию Т-переходов; суммарное количество выходных вершин-позиций определяет "емкость" очереди. Макропозиция генераторпозволяет представлять в сети источник меток (транзактов).
Если необходимо задать закон формирования меток, то "генератор" может быть дополнен разрешающей позицией.
Поскольку в Е-сети нельзя "накапливать" метки, то вводится макропозиция поглощения (или аккумулятор).
В целях повышения компактности и наглядности Е-сети для обозначения макропозиций используют специальные символы:
Q-очередь;
G - генератор;
А - аккумулятор.
Аналогичным образом, путем композиции N однотипных переходов могут быть получены макропереходы всех типов: XN, YN, JN.
Рассмотренные особенности Е-сетей существенно расширяют их возможности для моделирования дискретных систем вообще и параллельных процессов в частности. Ниже приведен пример описания в виде Е-сети мультипрограммной вычислительной системы (Рис.6). Обработка поступающих заданий организована в ней по принципу квантования времени: каждому заданию выделяется равный отрезок (квант) процессорного времени; если задание выполнено, то оно покидает систему, если же времени оказалось недостаточно, то задание встает в очередь и ждет повторного выделения кванта времени.
Рис.6. Пример описания вычислительной системы в виде Е-сети
На рисунке использованы следующие обозначения:
d1 - постановка задания в очередь;
d2 - выполнение задания в течение одного кванта времени;
d3 - анализ степени завершенности задания.
Помимо очевидных достоинств Е-сетей, проявленное к ним внимание объясняется еще и тем, что технология моделирования систем в виде Е-сетей весьма эффективно реализуется с помощью инструмента S1MULINK, входящего в состав пакета MATLAB. [10]
Вложенные сети Петри (NestedPetriNets- NPN) - один из современных инструментов моделирования и исследования параллельно работающих систем, обладающих определенной независимостью и собственной активностью. Эти черты делают привлекательным их использование при моделировании учебного процесса, проводимого группой обучаемых как в традиционном учебном процессе, так и при интерактивном компьютерном обучении. В данной работе впервые предлагается двухуровневая модель обучения, состоящая из центральной системы и набора систем-сателлитов, моделирующих индивидуальное поведение учащихся.
Интерактивное, т.е. в значительной мере самостоятельное обучение с использованием современных информационных технологий одно из важнейших направлений совершенствования системы образования, в том числе я в России. Быстрое развитие телекоммуникаций, и в особенности сети Интернет создало технологическую основу для обмена информацией между организациями и отдельными лицами, вне зависимости от их социального статуса, государственной принадлежности, географического положения, и явилось мощным стимулом развития дистанционного образования.
В настоящее время, несмотря на значительные успехи интерактивного обучения, существует немало нерешенных проблем. К ним мы в первую очередь относим разработку инженерных методов создания систем компьютерного обучения как своеобразных информационных систем с использованием современных методологий и технологий разработки, в частности, САSЕ - технологий. Кроме того, актуально создание методов априорной оценки дидактических и эксплуатационных характеристик разрабатываемых обучающих систем. Решение указанных проблем предполагает наличие моделей, адекватно описывающих все стороны процесса обучения - функциональных, информационных, динамических. Для описания динамики процесса обучения были предложены модели, основанные на формализме сетей Петри и на тесно связанной с ним теории цепей Маркова. Однако предложенные ранее модели описывали только взаимодействие отдельного учащегося с обучающей системой. В то же время в современном образовании важную роль играет умение учащихся работать в коллективе, взаимодействовать при выполнении проектов. Один из возможных путей к моделированию процессов коллективной работы учащихся связан, на наш взгляд, с применением сравнительно нового класса сетевых моделей - вложенных сетей Петри.
Данная работа посвящена изложению основных принципов моделирования распределенных систем с помощью указанного формализма. В первой части работы приведены краткие сведения по теории таких сетей. Во второй части предложена простая модель взаимодействия учащегося с обучающей системой и другими учащимися.
Вложенные сети Петри.
Рассмотрим расширение сетей Петри, которое оказывается полезным при моделирования учебного процесса. Речь идет о так называемых вложенных сетях Петри (NestedPetriNets- NPN).
Появление указанной разновидности сетей Петри связано с желанием исследователей иметь инструмент для адекватного и удобного представления систем со сложной иерархической и мультиагентной структурой.
Вложенные сети Петри представляют собой расширение стандартного формализма сетей Петри, в котором фишки, представляющие локальные ресурсы в позициях системной сети, сами могут быть сложными объектами с сетевой структурой и моделироваться сетями Петри нижнего уровня - их мы будем называть сателлитными сетями.
Структурно такая сеть состоит из системной сети SN и набором сетей-фишек (сателлитов) ЕNi, i= 1,…, n. При этом между некоторыми переходами системной сети, и переходами сетей-фишек может быть установлена связь, разрешающая только их совместное срабатывание. Такие переходы называются помеченными.
Функционирование сетей, входящих в NPN, в значительной мере совпадает с функционированием традиционных сетей Петри. Отличие составляют механизмы синхронизации работы сетей Петри различного уровня. В связи с этим в NPN различают следующие четыре вида шагов срабатывания.
Системно-автономный шаг, который соответствует срабатыванию непомеченного перехода в системной сети;
Сателлитно-автономный шаг, который соответствует срабатыванию непомеченного перехода в сети - фишке ЕNi;