Смекни!
smekni.com

Исследование линейных систем (стр. 1 из 5)

Кафедра: ИТ

Лабораторная работа

"ИССЛЕДОВАНИЕ ЛИНЕЙНЫХ СИСТЕМ"

Цель работы

В данной лабораторной работе средствами пакета Matlab (c использованием его расширения – пакета моделирования динамических систем Simulink) должно быть выполнено моделирование линейной системы, зафиксированы процессы, соответствующие элементам матричной весовой и переходной функций и проведено их сравнение с аналитически полученными зависимостями. Структурная схема системы представлена на рис. 1.1, коэффициенты структурной схемы - в табл. 1.1. Номер варианта для бригады указывается преподавателем.


1. Расчет матричных весовых и переходных функций

Рис. 1.1. Структурная схема системы

Таблица 1.1 Значения параметров структурной схемы

Номерварианта 1 2 3 4 5 6 7 8 9 10
a1 0,1 0,1 3 0,3 0,4 0,8 1 2 2 2
a2 0.1 0,3 0,2 0,5 0,6 1,2 3 3 4 6
k1 0,1 0,015 0,4 5 3 0,48 1,5 1 4 24
k2 0,1 2 1 0,03 0,08 2 2 6 2 0,5
Номерварианта 11 12 13 14 15 16 17 18 19 20
a1 3 0,8 0,9 0,9 0,9 1,2 3 4 4 5
a2 7 0,4 0,5 0,7 0,9 1,8 2 3 5 6
k1 0,5 0,5 2 0,12 0,5 0,1 4 2 6 4
k2 42 0,24 0,025 0,25 0,02 1,6 0,5 3 2 5

Подготовительная часть работы

Вычислить передаточную функцию

(матрицу
) с использованием резольвенты матрицы динамики А:

где В-матрица входов; С – матрица выходов; I(p) – присоединенная матрица для матрицы А;

– характеристический полином матрицы А (I(p) и
могут быть определены по методу Фаддеева-Леверье).

Найти элементы матричной весовой функции по формуле

,

где

– элемент i‑й строки и j‑го столбца матричной весовой функции, интерпретируемый как реакция i‑й координаты вектора выхода
на дельта-функцию в j‑й координате вектора входа
.

Вычислить матричную весовую функцию по формуле

,

где

и
– соответственно k‑й правый и k‑й левый собственные векторы матрицы А. Убедиться в идентичности результатов, полученных в пп. 1.2.2 – 1.2.3.

Вычислить элементы матричной переходной функции по формуле

,

где

– элемент i‑й строки и j‑го столбца матричной переходной функции, интерпретируемый как реакция i‑й координаты вектора выхода
на единичную функцию в j‑й координате вектора входа
.

Программа работы

В ходе проведения лабораторной работы требуется в среде Matlab подготовить схему моделирования исследуемой системы, провести модельный эксперимент и зафиксировать его результаты.

Изучаемая в данной работе система описана двумя способами: при помощи структурной схемы (см. рис. 1.1) и в виде векторно-матричных уравнений, полученных в ходе подготовки к работе. Поэтому предлагается провести моделирование для двух вариантов описания системы и сравнить его результаты (процессы, соответствующие элементам матричной весовой и переходной функций) с аналитически полученными зависимостями.

Рекомендуется создать две отдельных модели: одну – для получения и фиксации 4 процессов, соответствующих элементам матричной весовой функции, вторую – для 4 процессов, соответствующих элементам матричной переходной функции.

Таким образом, должно быть зафиксировано 8 процессов, причем каждый из них будет представлен в трех вариантах, совмещенных на одном графике (т. к. моделируется система, описанная, во-первых, в виде структурной схемы и, во-вторых, – в векторно-матричной форме, а также, в-третьих, получены аналитические зависимости для

и
).

Для проведения моделирования должны быть созданы 5 файлов.

1) Файл-сценарий w_h_init.m, содержащий определения всех необходимых переменных в моделях:

%Файл определениЯ переменных

%

%Параметры моделированиЯ длЯ mdl‑файла

t_end = 1; %максимальный шаг моделированиЯ

h_max = 0.01; %времЯ завершениЯ моделированиЯ

%Параметры исследуемой системы

a1 = 2;

a2 = 3;

k1 = 1;

k2 = 6;

Время моделирования t_end и максимальный шаг моделирования h_max должны быть выбраны такими, чтобы все процессы смогли достигнуть своих установившихся значений, а графики не имели изломов и искажений.

2), 3) Файлы с моделями Simulinkw.mdl и h.mdl, предназначенные для расчета и визуализации элементов соответственно весовой и переходной функций (рис. 1.2 и 1.3).

Параметры моделирования следует задать в окне Simulation Parameters, доступном через меню Simulation\Simulation parameters окна, вкоторомоткрыт mdl‑файл (рис. 1.4).

Рис. 1.4. Настройка параметров моделирования

Промоделировать систему, описанную в векторно-матричной форме, позволяет блок State-Space раздела Continuous основной библиотеки блоков Simulink. Структурная схема системы также может быть создана на основе блоков этой же библиотеки. Начальные условия следует принять нулевыми. Полученные структуры рекомендуется объединить в подсистемы, выделив все их элементы и выполнив команду CreateSubsystem меню Edit или нажав на сочетание клавиш Ctrl+G.


Рис. 1.5. Подсистема «Система в виде структурной схемы»

Рис. 1.6. Подсистема «Система с описанием
в векторно-матричной форме»

При организации источника входного воздействия (единичной или дельта-функции) следует использовать блоки Step и Pulse Generator раздела Sources. Обратите внимание на то, что необходимо подобрать длительность входного импульса, который бы воспринимался системой как дельта-функция (площадь импульса должна быть равна 1), т.е. значение длительности должно быть таким, чтобы его уменьшение уже не приводило к изменению отклика системы.


а б

Рис. 1.7. Настройки блоков:
а – PulseGenerator; б – Step

Графики найденных аналитически временных зависимостей можно получить при помощи блока MATLAB Fcn раздела Function&Tables и источника времени моделирования Clock.

Рис. 1.8. Настройки блока MatlabFcn, содержащего аналитическое описание элементов матричной весовой функции

Для визуализации процессов, соответствующих элементам матричной весовой и переходной функций, рекомендуется выводить их, а также текущее время моделирования в рабочую область памяти Mаtlab при помощи блоков ToWorkspace раздела Sinks, а затем строить их графики, используя команды построения графиков функций одной переменной. В этом случае не возникает проблем с переносом полученных результатов в электронную версию отчета по лабораторной работе и имеется возможность соблюсти все необходимые правила оформления графиков.

Рис. 1.9. Настройки блока ToWorkspace


Вывод графиков может быть продублирован с использованием осциллографов (блоков Scope раздела Sinks).

4), 5) Файлы-сценарии w_stop.m и h_stop.m, предназначенные для построения графиков процессов, соответствующих элементам матричной весовой и переходной функций, в стандартных графических окнах Figure.

%Построение графиков элементов матричной весовой функции (файл w_stop.m)

%

close all

figure

plot (t_, w11_s, 'r-', t_, w11_vm, 'b–', t_, w11_a, 'm – .')

grid on

xlabel ('t, c')

ylabel('w11')

title ('Графики элемента w11 матричной весовой функции')

legend ('w11‑struct', 'w11‑VM', 'w11‑analit', 0)

figure

plot (t_, w21_s, 'r-', t_, w21_vm, 'b–', t_, w21_a, 'm – .')

grid on

xlabel ('t, c')

ylabel('w21')

title ('Графики элемента w21 матричной весовой функции')

legend ('w21‑struct', 'w21‑VM', 'w21‑analit', 0)

figure