Смекни!
smekni.com

Исследование магнитных систем в программной системе конечно-элементного анализа ANSYS (стр. 4 из 7)

2.1.7.1 Стратегии решения задачи

Наилучшее приближение численного решения к параметрам реального устройства можно получить при помощи трехмерного моделирования, в котором учитываются все три пространственные координаты. В пакете Ansys реализованы алгоритмы для двух формулировок электромагнитных задач: векторной (Magnetic Vector Potential - MVP) и скалярной (Magnetic Scalar Potential - MSP).

Как отмечается в документации по пакету, метод магнитного векторного потенциала в сравнении с методом скалярного потенциала более труден в реализации модели, а также дает меньшую точность в моделях, содержащих области с различной магнитной проницаемостью.

Метод MVP реализуется при помощи КЭ типа SOLID97, при этом области тока являются частью конечно-элементной модели, и их параметры задаются как константы (Real Constants) соответствующих КЭ. Метод MSP реализуется при помощи КЭ типа SOLID96 и SOLID98, при этом области тока не являются частью конечно-элементной модели, а задаются специальными КЭ типа SOURC36, геометрическое пространство которых может пересекаться с пространством конечно-элементной сетки модели. Для этого случая в пакете существует макрос, при помощи которого можно легко задать катушку

намагничивания.

Для решения задач на основе скалярного магнитного потенциала в пакете ANSYS используются три стратегии:

1) Reduced Scalar Potential (RSP) Strategy – стратегия упрощённого скалярного потенциала;

2) Difference Scalar Potential (DSP) Strategy - стратегия разностного скалярного потенциала;

3) General Scalar Potential (GSP) Strategy - стратегия обобщённого скалярного потенциала.

Их различие состоит в некоторых упрощениях уравнений моделирующих поле. Стратегия решения задаётся пользователем на этапе решения. От её выбора зависит правильность результатов расчёта. [1]


2.1.7.2 Расчёт трёхмерной магнитостатической задачи на примере исследуемой установки.

Проводится расчет магнитостатического трехмерного поля для кусочно-однородной, линейной изотропной (абсолютная магнитная проницаемость µ = 1) среды моделирования исследуемой магнитной системы. Модель устройства приведена на рис. 2.12. Стальной стержень и постоянные магниты расположены в воздушной среде. Для разбиения модели устройства регулярной сеткой воздушная среда моделируется сплошным цилиндром.

Рис. 2.12 Модель устройства магнитной пружины.

Для создания КЭ модели используется элемент Solid96 – восьмиузловой элемент. В каждом узле он имеет одну степень свободы – суммарную составляющую электромагнитного потенциала. Вид созданной КЭ модели приведен на рис.2.13 при величине воздушного зазора равного 4 мм.

Рис. 2.13 Вид созданной КЭ модели магнитной пружины, воздушный зазор между магнитами 4мм.

Данная модель имеет 41561 узел и 13600 элементов, обладает 41561 степенью свободы.

Рис.2.14 Распределение модуля вектора магнитной индукции (BSUM).


Рис.2.15 Распределение модуля вектора магнитной индукции (BSUM) вблизи системы постоянных магнитов.

Была рассчитана сила магнитного поля на нижний магнит модели. Сравнение результатов, с полученными ранее моделями приведено в таблице 2.5.

Таблица 2.5. Сравнение результатов расчета силы магнитного поля на нижний магнит для модели с воздушны зазором между магнитами 4мм.

Метод расчета силы магнитного поля на нижний магнит модели. Модель с “потокопараллельным” граничным условием, N Модель с использованием элементов Infin,N 3d модель, N
1 Virtual Work 1.6044 1.6026 1.6049
2 Maxwell Stress Tensor 1.4810 1.5720 1.6129

По данным таблицы 2.5 видно, что расчет силы магнитного поля с использованием 3d модели дает наилучшую сходимость методов. Также важно отметить, что для каждой модели сила магнитного поля, рассчитанная методом виртуальной работы, дает результаты с точностью 10-2. Для расчетов аналогичных задач приемлема любая модель, однако менее трудоемким является способ с использованием первой модели.

2.2 Эксперимент

2.2.1 Описание установки

Исследуемая установка состоит из цилиндрического корпуса (пластмасса), направляющего стержня (сталь), электронных весов, измерительной шкалы и двух одинаковых постоянных магнитов марки NdFeB (неодим-железо-бор). В описываемой установке постоянные магниты расположены одноименными полюсами вертикально друг к другу, обеспечивая этим рабочий зазор. Первый магнит жестко зафиксирован в верхней части подвижного корпуса. В нижней части корпуса расположено отверстие для стального стержня, на верхнем конце которого прикреплен второй постоянный магнит.

Рис 2.16 Исследуемая установка с постоянными магнитами.

Стальной стержень с магнитной системой в корпусе установлен на электронные весы. На корпус и зафиксированный в нем верхний магнит прикладывается нагрузка, воздушный зазор между магнитами уменьшается. Это фиксируется с помощью измерительной шкалы. С помощью электронных весов измеряется нагрузка, приложенная к подвижному корпусу с верхним магнитом.

Таблица 2.6 Основные характеристики установки.

Составная часть установки Масса составной части установки, Гр. Индукция насыщения, Длина составной части установки, mm
1 Магнит NdFeB 0.5 5 3
2 Стальной стержень 40 2 100
3 Корпус 6 6 150

2.2.2 Экспериментальные данные

Таблица 2.7. Зависимость силы, действующей на верхний магнит от воздушного зазора между магнитами.

Воздушный зазор, мм. Сила, действующая на верхний магнит, Н.
1 1 4,46
2 2 3,66
3 3 2,40
4 4 1,68
5 5 1,28
6 6 0,91
7 7 0,70
8 8 0,56
9 9 0,41
10 10 0,33
11 12 0,21
12 14 0,12
13 17 0,06

Из рисунка 2.17 видно, что в первом приближении сила магнитного поля возрастает по экспоненте с уменьшением расстояния между постоянными магнитами.


Рис.2.17. Зависимость силы, действующей на верхний магнит от воздушного зазора между магнитами.

2.3 Сравнение результатов рассчитанных методами программной системы конечно-элементного анализа ANSYS с экспериментальными

По данным таблицы 2.8 были построены графики зависимости силы магнитного поля от расстояния между магнитами. Рис.2.18

Таблица№2.8. Зависимость силы, действующей на верхний магнит от воздушного зазора между магнитами.

Воздушный зазор, мм. Эксперимент, Н. Ansys, Н
1 1 4,46 4,61
2 2 3,66 3,11
3 3 2,40 2,20
4 4 1,68 1,63
5 5 1,28 1,22
6 6 0,91 0,91
7 7 0,70 0,69
8 8 0,56 0,53
9 9 0,41 0,42
10 10 0,33 0,33
11 12 0,21 0,22
12 14 0,12 0,15
13 17 0,06 0,09

Рис.2.18 Зависимость силы магнитного поля от величины воздушного зазора между магнитами.


Глава III. Магнитный Держатель

3.1 Численное решение

3.1.1 Постановка задачи расчета поля и силы магнитного поля исследуемой установки

Магнитный держатель представляет собой систему из постоянного кольцевого магнита NdFeB и стального кольцевого магнитопровода. Магнитный держатель предназначен для установки и фиксации деталей, в процессе сборочных и монтажных работ. В данной постановке задачи он устанавливается на основание из технического железа. Техническое железо с содержанием углерода до 0,04%, углеродистые стали и чугун широко применяются для магнитопроводов, работающих в условиях постоянных магнитных полей. Техническое железо обладает высокой индукцией насыщения (до 2,2 Тл), высокой магнитной проницаемостью и низкой коэрцитивной силой.

Таблица 3.1 Основные характеристики установки.

Составная часть установки Материал Коэрцитивная сила, Нс, А/м Индукция насыщения, Вmax , Tл Относительная магнитная проницаемость µср
1 Магнит NdFeB 750000 1,1
2 Корпус Сталь 3 64 2 Кривая В(Н)
3 Основание Техническое железо 64 1.5 Кривая В(Н)

В таблице 3.2 приведены данные химического состава стали 3, полученные с помощью масс-спекторометра фирмы Belec.

Таблица 3.2 Химический состав Стали 3.

C Si Mn P S Cu Al Cr Ni Sb. Fe.
0,146 0,071 0,5209 0,016 0,015 0,041 0,0006 0,024 0,025 0,032 99,11

Из данных таблицы 3.2 видно, что Сталь 3 на 99,11% состоит из железа. Для технического железа имеется кривая намагниченности В(Н), для стали 3 таких данных нет, поэтому при решении задачи для стали3 использовалась кривая В(Н) для технического железа, рис.3.1.