Смекни!
smekni.com

Исследование нелинейных систем (стр. 6 из 8)

clearvec_magn_5;

%Проверка гипотезы фильтра

filtration = magn_1/magn_3

%построениегистограммы

figure(3);

bar([0 1 2 3 4 5], [magn_0 magn_1 magn_2 magn_3 magn_4 magn_5]);

grid on

title(['Гарм. состав y(t). НЭ– ', nlin, ', b=', num2str(b),…

', c=', num2str(c), '; ЛЧ– ', lin, ', k=', num2str(k), ', T1=', num2str(T1),…

', T2=', num2str(T2), ', T3=', num2str(T3)])

xlabel(['НомергармоникиГФ: A1/A3=', num2str(filtration)]);

ylabel ('Амплитуда гармоники');

Все команды Matlab, использованные при составлении данной программы, описаны в приложении.

В m‑файле задаются значения параметров линейной части и нелинейного элемента, а также начальные условия по выходу линейной части, указывается время моделирования и шаг моделирования.

Для проведения графического расчета параметров периодических режимов m‑файл содержит описания ЛЧ (через комплексный передаточный коэффициент) и нелинейности (через коэффициенты гармонической линеаризации и эквивалентный комплексный передаточный коэффициент). Совместное воспроизведение характеристик Wл(jw) и

осуществляется двумя способами: при помощи команды plot и команды ltiview. Первая позволяет совместно вывести на рисунок указанные характеристики без вывода комплексно-сопряженных характеристик Wл(-jw) и
, но не позволяет по точке их пересечения определить частоту и амплитуду периодических режимов. При помощи второй одновременно выводятся все четыре характеристики, но имеется возможность определения частоты и амплитуды по точке пересечения: команда zoom контекстного меню, вызываемого правой клавишей мыши, позволяет увеличить нужную область рисунка, после чего нужно поместить указатель мыши на требуемую характеристику и нажать на ее левую клавишу – на графике появятся отметка и информационное окно, которые можно переместить мышью в точку пересечения. Для случая системы с идеальным трехпозиционным реле предусмотрено раздельное построение характеристики
до и после точки экстремума при помощи двух команд ltiview.

После завершения графического расчета производится вызов и запуск модели нелинейной системы (GB_mod.mdl). По окончании моделирования строится временной процесс y(t) на выходе линейной части, определяются частота и амплитуда автоколебаний (их значения можно увидеть в командном окне и на созданном рисунке).

На этапе анализа спектрального состава периодического режима на выходе линейной части производится вызов и запуск модели (R_Fourie.mdl), определяющей амплитуды гармоник сигнала y(t), записанного в рабочую область памяти, и строится результирующая гистограмма «Номер гармоники – амплитуда гармоники». В командное окно и окно с гистограммой выводится отношение амплитуд первой и третьей гармоник, что позволяет сделать заключение о выполнении / невыполнении гипотезы фильтра.

При составлении моделей в Simulink (GB_mod.mdl и R_Fourie.mdl) используются элементы библиотек Simulink (Math, Linear, Nonlinear, Signals & Systems, Sinks и Sources), Simulink Extras (Additional Linear) и Power System Blockset (Extra Library\Measurements), доступные через Simulink Library Browser (рис. 3.3 – 3.6). В модели нелинейной системы GB_mod.mdl, показанной на рис. 3.3, предусмотрены переключатели конфигурации линейной и нелинейной частей, управление ими осуществляется соответственно через переменные config_lin и config_nlin, значения которых задаются в m‑файле GB_prog.m.

Параметры моделирования должны быть указаны в окне Simulation parameters, доступном через меню Simulation\Simulation parameters окна, вкоторомоткрыт mdl‑файл (рис. 3.7, 3.8).

Установку параметров различных функциональных блоков моделей GB_mod.mdl и R_Fourie.mdl поясняют рис. 3.9 – 3.15.

Рис. 3.4. Организация трехпозиционного реле без гистерезиса
(файл GB_mod.mdl)


Рис. 3.5. Подсистема определения периода и амплитуды автоколебаний (файл GB_mod.mdl)

Рис. 3.6. Модель в Simulink, вычисляющая амплитуду гармоник в составе периодического процесса на выходе линейной части (файл R_Fourie.mdl)


Рис. 3.7. Параметры моделирования для файла GB_mod.mdl

Рис. 3.8. Параметры моделирования для файла R_Fourie.mdl

а б

Рис. 3.9. Параметры блоков в составе трехпозиционного реле без гистерезиса (файл GB_mod.mdl): а – блока Relay1; б – блока Relay2


а б

Рис. 3.10. Параметры нелинейностей (файл GB_mod.mdl): а – люфта; б – двухпозиционного реле с гистерезисом

а б

Рис. 3.11. Параметры блоков линейной части (файл GB_mod.mdl): а – инерционного звена; б – интегрирующего звена

Рис. 3.12. Параметры блока To Workspace (файл GB_mod.mdl)


а б

Рис. 3.13. Параметры блоков подсистемы определения периода и амплитуды автоколебаний (файл GB_mod.mdl): а – блока ограничения сигнала Saturation2; б – блока памяти Memory1

Рис. 3.14. Параметры блока Fourier (файл R_Fourie.mdl)

Рис. 3.15. Параметры блока From Workspace (файл R_Fourie.mdl)


Выполнение работы

Модернизируйте файл сценария (m‑файл) в соответствии со своим вариантом: установите значения переменных конфигурации, т.е. выберите передаточную функцию линейной части и первую из двух нелинейностей вашего варианта; установите заданные значения параметров ЛЧ и нелинейности.

Запустите m‑файл на исполнение. Зафиксируйте совместно воспроизведенные командой plot частотную характеристику линейной части Wл(-jw) и характеристику нелинейности –1/Wн(jA). По точкам их пересечения определите Ап и wп, используя LTI Viewer.

Оцените устойчивость найденных периодических режимов, задавая различные начальные условия (н.у.) по выходу ЛЧ (для каждого периодического режима достаточно двух значений из окрестности значения Ап – y(0)<Ап и y(0)>Ап). Следует провести несколько экспериментов, запуская m‑файл с разными значениями н.у. и фиксируя процессы во времени y(t).

Для устойчивого периодического режима зафиксируйте значения амплитуды и частоты автоколебаний, гистограмму с их гармоническим составом и соотношение амплитуд первой и третьей гармоник, при этом с помощью осциллографа «Гармоники», находящегося в модели R_Fourie.mdl, проконтролируйте достижение амплитудами гармоник своих установившихся значений, т.е. убедитесь в том, что выбранное время моделирования является достаточным для завершения переходных процессов в системе; в противном случае увеличьте его и повторите эксперимент.

Найдите критический коэффициент усиления ЛЧ: подберите такое значение параметра k, при котором точка пересечения характеристик нелинейности и ЛЧ начинает исчезать. Сравните с теоретически рассчитанным значением.

Выберите вторую из двух нелинейностей вашего варианта, установив соответствующее значение конфигурационной переменной config_nlin в m‑файле, и повторите действия из пп. 3.3.2 - 3.3.5.

Содержание отчёта

Вариант задания, схемы моделирования, цель работы.

Материалы, подготовленные по пп. 3.2.2 - 3.2.4.

Результаты моделирования (совмещенные характеристики нелинейности и линейной части, построенные на комплексной плоскости, с указанием значений параметров периодических режимов, найденных по точкам пересечения; процессы во времени y(t) при различных вариантах начальных условий с указанием значений параметров установившихся периодических режимов; гистограммы гармонического состава установившихся периодических режимов).

Анализ результатов (нахождение соответствия между результатами предварительной подготовки, графического расчета по методу гармонического баланса и моделирования нелинейной системы в отношении устойчивости / неустойчивости периодических режимов, в отношении значения амплитуды и частоты автоколебаний, значения критического коэффициента).

Выводы (сделать заключение о выполнении / невыполнении гипотезы фильтра, о погрешностях определения значений параметров периодических режимов по методу гармонического баланса).

Отчет оформляется на листах формата А4, допускается рукописное, печатное или комбинированное оформление.

Контрольные вопросы

Метод гармонического баланса: назначение, условия применения, основное уравнение. Суть метода гармонической линеаризации и гипотезы фильтра. Метод Д-разбиений: основные положения. Определение комплексного передаточного коэффициента нелинейного звена.