Смекни!
smekni.com

Исследование операций (стр. 2 из 2)

2. Определить опорный план задачи.

3. Определить оптимальный план задачи.

4. Проверить решение задачи методом потенциалов.

Таблица 1

№вар. а1 а2 а3 b1 b2 b3 b4 b5 с11 с12 с13
9 300 700 1000 200 100 400 600 200 23 40 10
с14 с15 с21 с22 с23 с24 с25 с31 с32 с33 с34 с35
12 21 25 21 20 50 18 15 30 32 25 50

Решение:

Составим таблицу транспортной задачи.

Таблица 2

B1 B2 B3 B4 B5 a
A1
23 40 10 12 21 300
A2
25 21 20 50 18 700
A3
15 30 32 25 50 1000
b 200 100 200 600 200

Заметим, что сумма запасов превышает заявки. Это транспортная задача с избытком запасов. Для того чтобы привести к транспортной задаче с правильным балансом, введем фиктивный пункт назначения В5 с нулевыми перевозками. Добавим недостающее число заявок b5=700. Теперь количество заявок равно количеству запасов и равно 2000.

Заполним таблицу. Для этого не будем использовать метод северо-западного угла, т.к. он принесет много хлопот, будем заполнять клетки слева направо от заявок к запасам, исходя из наименьшей цены.

Таблица 3

B1 B2 B3 B4 B5 В6 a
A1 300
23 40 10 12 21 0 300
A2 100 200 200 200
25 21 20 50 18 0 700
A3 200 300 500
15 30 32 25 50 0 1000
b 200 100 200 600 200 700 2000

Это будет опорный план.

Количество заполненных ячеек – 6. r=m+n-1=3+6-1=8>6, значит, план является вырожденным, т.к. не хватает 2 базисных клеток. Добавим их, и сделаем план невырожденным. Для этого изменим в некоторых клетках количество запасов и заявок на малую величину _ EMBED Equation.3 ___

Таблица 4

B1 B2 B3 B4 B5 В6 a
A1 300 300
23 40 10 12 21 0
A2
100
200
200
200 700
25 21 20 50 18 0
A3 200
300
500 1000
15 30 32 25 50 0
b 200 100 200 600 200 700 2000

Проверим методом потенциалов:

Примем α1=0, тогда βj = cij – αi (для заполненных клеток).

Если решение верное, то во всех пустых клетках таблицы Δij = cij – (αi+ βj) ≥ 0

Очевидно, что Δij =0 для заполненных клеток.

В результате получим следующую таблицу:

Таблица 5

β1=2 β2=8 β3=7 β4=12 β5=6 β6=-13 a
α1=0 300 300
23-2>0 40-8>0 10-7>0 12-12=0 21-6>0 0-(-13)>0
α2=13 100 200 200 200 700
25-13-2>0 21-8-13=0 20-7-13=0 50-12-13>0 18-6-13=0 0-13+13=0
α2=13 200 300 500 1000
15-13-2=0 30-13-8>0 32-13-7>0 25-13-2=0 50-13-6>0 0-13+13=0
b 200 100 200 600 200 700 2000

Таким образом, решение верное, т.к. Δij > 0 для всех пустых клеток и Δij =0 для всех заполненных.

Тогда сумма всех перевозок:

L=200*15+10*21+200*20+300*12+300*25+200*18+200*0+500*0=23800

Ответ:

B1 B2 B3 B4 B5 В6 a
A1 300
23 40 10 12 21 0 300
A2 100 200 200 200
25 21 20 50 18 0 700
A3 200 300 500
15 30 32 25 50 0 1000
b 200 100 200 600 200 700 2000

Задание 4

Задача 54

Условие:

Определить экстремум целевой функции вида

( = (11(12+(22(22+(12(1(2+(1(1+(2(2

при условиях:

(11(1+(12(2<=>(1

(21(1+(22(2<=>(2 .

Найти стационарную точку целевой функции и исследовать ее (функцию) на выпуклость (вогнутость) в окрестностях стационарной точки.

Составить функцию Лагранжа.

Получить систему неравенств в соответствии с теоремой Куна-Таккера.

Используя метод искусственных переменных составить симплекс-таблицу и найти решение полученной задачи линейного программирования.

1. Дать ответ с учетом условий дополняющей нежесткости.

2.

b1 b2 c11 c12 c22 extr a11 a12 a21 a22 p1 p2

Знаки огр.

1 2

31 –7 –2 4 1.5 –2 min –2 1.5 4 –3 18 9 £ ³

Решение:

1) Целевая функция: F=4x12-2x22 +1,5x1x2-7x1-2x2→min

Рассмотрим F’=-4x12+2x22 -1,5x1x2+7x1+2x2→max

Ограничения g1(x) и g2(x): _ EMBED Equation.3 ___ →_ EMBED Equation.3 ___

Определим относительный максимум функции F’, для этого определим стационарную точку (х10, х20):

_ EMBED Equation.3 ___→ _ EMBED Equation.3 ___→ _ EMBED Equation.3 ___

2) Исследуем стационарную точку на максимум, для чего определяем выпуклость или вогнутость функции:

F’11 (х10, х20) = -8 < 0

F’12 (х10, х20) = -1,5

F’21 (х10, х20) = -1,5

F’22 (х10, х20) = 4

_ EMBED Equation.3 ___

Т.к. условие выполняется, то целевая функция является строго выпуклой в окрестности стационарной точки

3) Составляем функцию Лагранжа:

L(x,u)=F’(x)+u1g1(x)+u2g2(x)=

=-4x12+2x22 -1,5x1x2+7x1+2x2+u1(_ EMBED Equation.3 ___)+u2(_ EMBED Equation.3 ___)

Получим уравнения седловой точки, применяя теорему Куна-Таккера:

_ EMBED Equation.3 ___ i=1;2

Объединим неравенства в систему А, а равенства в систему В:

Система А:

_ EMBED Equation.3 ___

Система В:

_ EMBED Equation.3 ___

Перепишем систему А:

_ EMBED Equation.3 ___

4)Введем новые переменные

V={v1,v2}≥0; W={w1,w2}≥0

в систему А для того, чтобы неравенства превратить в равенства:

_ EMBED Equation.3 ___

Тогда

_ EMBED Equation.3 ___.

Значит , система В примет вид:

_ EMBED Equation.3 ___ - это условия дополняющей нежесткости.

5) Решим систему А с помощью метода искусственных переменных.

Введем переменные Y={y1; y2} в 1 и 2 уравнения системы

_ EMBED Equation.3 ___

Затем создадим псевдоцелевую функцию Y=My1+My2→min

Y’=-Y= -My1-My2→max.

Пусть свободные переменные: х1, х2, v1, v2, u1, u2;

а базисные y1, y2, w1, w2.

Приведем систему и целевую функцию к стандартному виду, для построения симплекс-таблицы:

_ EMBED Equation.3 ___

_ EMBED Equation.3 ___

Решим с помощью симплекс-таблицы. Найдем опорное решение:


b x1 x2 u1 u2 v1 v2
Y'/M -9 -9,5 2,5 0,5 1 1 1
8,3125 1,1875 1,7813 -2,375 -4,75 -1,188 0
y1 7 8 1,5 -2 -4 -1 0
0,875 0,125 0,1875 -0,25 -0,5 -0,125 0
y2 2 1,5 -4 1,5 3 0 -1
-1,313 -0,188 -0,281 0,375 0,75 0,1875 0
w1 18 -2 1,5 0 0 0 0
1,75 0,25 0,375 -0,5 -1 -0,25 0
w2 9 -4 3 0 0 0 0
3,5 0,5 0,75 -1 -2 -0,5 0
b y1 x2 u1 u2 v1 v2
Y'/M -0,69 1,1875 4,2813 -1,875 -3,75 -0,188 1
0,6875 -0,188 -4,281 1 3,75 0,1875 -1
x1 0,875 0,125 0,1875 -0,25 -0,5 -0,125 0
0,0917 -0,025 -0,571 0,1333 0,025 -0,133
y2 0,688 -0,188 -4,281 1,875 3,75 0,1875 -1
0,3667 -0,1 -2,283 0,5333 2 0,1 -0,533
w1 19,75 0,25 1,875 -0,5 -1 -0,25 0
0,1833 -0,05 -1,142 0,2667 1 0,05 -0,267
w2 12,5 0,5 3,75 -1 -2 -0,5 0
0,3667 -0,1 -2,283 0,5333 2 0,1 -0,533
b y1 x2 y2 u2 v1 v2
Y'/M 0 1 0 1 0 0 0
x1 0,967 0,1333
u1 0,367 -0,1 -2,283 0,5333 2 0,1 -0,533
w1 19,93 0,2667
w2 12,87 0,5333

Т. о, u2=x2=y1=y2=v1=v2=0; x1=0,967; u1=0,367; w1=19,93; w2=12,87;

б) Условия дополняющей нежесткости выполняются (u2w2=0), значит решения исходной задачи квадратичного программирования существует.

ОТВЕТ: существует.


Литература

Курс лекций Плотникова Н. В.