Припустимо, що представник кластера - це не одиночне значення, а ядро, що володіє наступними властивостями:
1. по представнику можна ідентифікувати кластер;
2. по кластері обчислюється представник.
Приклад: представник - два значення. Даний представник задовольняє першій властивості, тому що можна коректно визначити відстань від об'єкта, що складає із двох значень, до об'єкта з одного значення. Друга властивість також виконується, якщо застосувати простий алгоритм K-середніх з K = 2, тобто розбити кластер на два, а потім вибрати як представник вихідного кластера центри получившихся двох подкластеров.
Інші приклади представників: кілька значень, відрізки, різноманітні геометричні фігури.
Далі узагальнений алгоритм повторює стандартний алгоритм K-середніх: спочатку сформувати K кластерів по випадково обраних ядрах, потім итерировать процес формування K нових ядер і перерахування кластерів доти, поки кількість переміщень не стане досить малим.
4. Висновок
У даній роботі розглянуті різноманітні способи аналізу графічних зображень, які забезпечать найбільш високу ефективність при обробці зображень, методи підходу до ефективного кодування відеоінформації, завдяки яким можна визначити основні критерії обробки зображення, та зробити акцент на будь-якому з них при написанні алгоритму. Також було розглянуто та запропоновано декілька алгоритмів розбивки зображення на кластери, з метою подальшої обробки зображення.
Можна зробити висновок, що для кодування зображення з найменшими потерями інформативності, найбільш ефективним методом буде метод кластерізації зображення на основі алгоритму динамічних згущень, завдяки якому при зменшенні кількості кольорів зображення навіть з 256 до 5, ми отримаємо досить зрозумілу картинку.
Список використаних джерел інформації
1. Айвазян С.А., Мхитарян.В.С. Прикладная статистика и основы эконометрики.- М.: Юнити. 1998.-1022 с.
3. Кричевский Р. Е. Сжатие и поиск информации. - М.: Радио и связь, 1989.
5. Левенштейн В. И. Об избыточности и замедлении разделимого кодирования натуральных чисел // Проблемы кибернетики. - М., 1968. - Вып. 20. - С. 173 - 179.
6. Рябко Б.Я., Фионов А.Н. Эффективный метод адаптивного арифметического кодирования для источников с большими алфавитами // Проблемы передачи информации. - 1999. - Т. 35, Вып. 4. - С. 95 - 108.
7. Семенюк В. В. Применение вероятностного моделирования в методах экономного кодирования видеоинформации // Труды XI Всероссийской научно-методической конференции Теле-матика'2004. - Санкт-Петербург, Россия, 7-10 июня, 2004. -С. 186 - 187.
9. Семенюк В.В. Экономное кодирование дискретной информации.-СПб: СПб ГИТМО (ТУ), 2001. - 115 с, - ISBN 5-7577-0076-9.
10. Хаффмен Д. А. Метод построения кодов с минимальной избыточностью: Пер. с англ. // Кибернетический сборник. - М.: ИЛ, 1961. - Вып. 3. - С. 79 - 87.