Спектр излучения компьютерного монитора включает в себя рентгеновскую, ультрафиолетовую и инфракрасную область, а также широкий диапазон электромагнитных волн других частот. От рентгеновских лучей опасности практически нет, так как они полностью поглощаются веществом экрана. Наибольшую опасность представляют биологические эффекты низкочастотных электромагнитных полей, которые до настоящего времени считались абсолютно безвредными. В ряде экспериментов было обнаружено, что электромагнитные поля с частотой 60 Гц могут инициировать биологические сдвиги (вплоть до нарушения синтеза ДНК) в клетках животных. В отличие от рентгеновских лучей электромагнитные волны обладают необычным свойством - опасность их воздействия не обязательно уменьшается с уменьшением интенсивности облучения; определенные электромагнитные волны действуют на клетку лишь при малой интенсивности излучения или в конкретных частотах - в окнах прозрачности.
Исследователи из Macworld обнаружили, что если на расстоянии 10 см перед мониторами, обычно используемыми с компьютерами Macintosh, напряженность магнитного поля составляет примерно от 5 до 23 мГс, то на расстоянии 70 см от экрана ни у одного из обследованных мониторов напряженность поля не превышала величины 1 мГс. (Интенсивность поля вне указанных пределов составляла 0.1 - 0.5 мГс.) Пользователям Macintosh, желающим снизить уровень облучения переменными магнитными полями, следует расположить мониторы так, чтобы расстояние до них составляло величину, равную длине вытянутой руки (с вытянутыми пальцами).
Поскольку магнитные поля сзади и по бокам большинства мониторов значительно сильнее, чем перед экраном, пользователи должны располагать свои рабочие места на расстояниях не менее 1,22 м от боковых и задних стенок других мониторов. Следует иметь в виду, что магнитное излучение не задерживается ни перегородками, ни стенками, ни свинцовыми фартуками, ни даже телом человека.
Эффективность зрительного восприятия зависит от ряда условий. Чтобы видеть и различать объект при нормальной остроте зрения необходимо обеспечить:
определенный уровень освещенности и размера объекта, необходимая контрастность фона;
достаточный размер объекта;
необходимую экспозицию, т. е. время различения объекта.
Оптимальное расстояние от глаза до объекта наблюдения зависит от линейной величины рассматриваемого объекта и остроты зрения. При работе за дисплеем это расстояние обычно равно 35 - 60 см. Пользователь обычно работает с текстовой информацией, поэтому символы на экране должны быть увеличены в 1.5 - 2 раза по сравнению с печатным текстом.
Для пользователя ЭВМ зрительное восприятие играет очень большую роль. Это предъявляет значительные требования к освещенности рабочего места, так как во многом именно от освещенности рабочего места зависит степень утомляемости человека.
Система освещения машинного зала ПЭВМ должна отвечать следующим основным требованиям:
1. Уровень освещенности рабочих мест должен соответствовать характеру выполняемых работ.
2. Достаточно равномерное распределение яркости на рабочих поверхностях и в окружающем пространстве.
3. Отсутствие резких теней, прямой и отраженной блескости.
4. Постоянство освещенности во времени.
5. Оптимальная направленность светового потока.
6. Долговечность, экономичность, электро- и пожаробезопасность, эстетичность, удобство и простота эксплуатации.
Для обеспечения нормальной естественной освещенности, площадь оконных проемов должна быть не менее 25% площади пола.
Строительные нормы и правила СНиП II-4-79 устанавливают следующие нормы искусственной освещенности рабочих мест (с высотой рабочей поверхности над полом 80 см):
1. Норма освещенности:
а) при комбинированном освещении – 750 лк;
б) при общем освещении – 400 лк;
2. Коэффициент пульсаций освещенности рабочего места Кп ≤ 15%.
Рекомендуемая освещенность при работе с дисплеем составляет 200 лк, а при работе с экраном в сочетании с работой над документами –400 лк. Рекомендуемые перепады яркости в поле зрения оператора должны лежать в пределах 1:5 – 1:10.
Расчет общего освещения
Рассчитаем общее освещение в машинном зале ПЭВМ методом коэффициента использования светового потока по уравнению:
1. Выбираем рекомендованное для машинного зала люминесцентное освещение.
2. Располагаем светильники рядами вдоль длинной стороны помещения.
3. Будем использовать светильники типа УСП-35 с двумя лампами типа ЛБ-40.
4. Для обеспечения наилучших условий освещения, расстояние между рядами светильников L должно соответствовать отношению:
где h-высота подвеса светильников,
где H = 3.0 м – высота помещения,
hc = 0.2 м – свес светильника,
hp = 0.75 м – высота рабочей поверхности от пола.
h = 3.0-0.2-0.75 = 2.05 [м]
ÞL = л*h = 2.3 … 3.4 [м]
5. Количество рядов светильников N найдем из уравнения:
L * (0.33* 2 + N-1) = B
N = 2 ряда.
Согласно нормам, нормируемая минимальная освещенность при общем освещении: Eн = 400 лк.
Так как запыленность воздуха меньше 1 мг/мі, то коэффициент запаса:
кз = 1.5.
Площадь помещения S = A*B = 6*4 = 24 [мІ].
Так как мы предполагаем создать достаточно равномерное освещение, то коэффициент неравномерности освещения: z = 1.15.
Индекс помещения:
6. Коэффициенты отражения светового потока принимаем:
от потолка сп = 70%,
от стен сс = 50%,
от пола спола = 10%.
Тогда по таблице находим коэффициент использования светового потока: з = 0.46.
7. Так как затенения предполагаем не создавать, то коэффициент затенения: г = 1.
8. По таблице находим световой поток лампы ЛБ-40: Фл = 3120 лм.
9. Количество светильников в одном ряду:
Расположение светильников:
Длина светильника lсв = 3 м
Количество светильников в ряду М = 3 шт
Длина помещения А = 6 м
Количество рядов светильников N = 2 шт
Ширина помещения В = 4 м
Так как А – М*lсв = 2.1<4*L = 9.2 [м] (где L – рассчитанное минимальное расстояние между светильниками), то расстояние между светильниками в одном ряду L2 можно сделать равным расстоянию от крайнего светильника в ряду до стены. Тогда
Расстояние между рядами L1 при расстоянии крайнего ряда от стены 0.33*L1:
Итак, для нормального освещения машинного зала ПЭВМ используем 6 светильников типа УСП-35 с двумя лампами типа ЛБ-40.
Параметры микроклимата согласно ГОСТ 12.1.005-88 являются:
· температура;
· относительная влажность;
· скорость движения воздуха;
· запыленность воздуха.
С целью обеспечения комфортных условий для операторов ПЭВМ и надежной работы оборудования, необходимо поддерживать следующие метеорологические условия (согласно СН 512-78):
Параметры воздушной среды на рабочих местах | ||||||
Температура | Оптимальные | Допустимые | ||||
Наружного воздуха, °С | Температура, °С | Относительная влажность, % | Скорость движения воздуха, не более, м/c | Температура, °С | Относительная влажность, % | Скорость движения воздуха, не более, м/c |
Ниже +10 | 20-22 | 40-60 | 0.2 | 18-22 | Не более 70 | 0.3 |
Выше +10 | 20-25 | 40-60 | 0.3 | Не более, чем на 3 °С выше наружного воздуха в 13 ч дня самого жаркого месяца, но не выше 28 °С | 70 при 24 °Си ниже;65 при 25 °С;60 при 26 °С;55 при 27 °С;50 при 28 °С. | 0.5 |
Атмосферное давление в помещении машинного зала должно быть 1013.25±266 ГПа. При пониженном давлении воздуха ухудшается отвод теплоты от элементов ПЭВМ, снижаются изоляционные свойства воздуха.
Воздух, используемый для вентиляции машинного зала, должен очищаться от пыли. Запыленность воздуха не должна превышать 1 мг/мі, а размеры пылинок – 3 мкм. Пыль, попадающая на платы комплекса, приводит к снижению теплообмена и способствует перегреву приборов.
В помещении машинного зала необходимо предусмотреть систему отопления. Она должна обеспечивать достаточное, постоянное и равномерное нагревание воздуха в помещении в холодный период года, а также безопасность в отношении пожара и взрыва. При этом колебания температуры в течении суток не должны превышать 2-3 °С; в горизонтальном направлении – 2 °С на каждый метр длины; а в вертикальном – 1 °С на каждый метр высоты помещения. Для отопления помещения машинного зала рекомендуется использовать водяные или воздушные системы центрального отопления.
Дежурное отопление должно включаться в помещении машинного зала ночью, в выходные и праздничные дни и, когда ПЭВМ не работают. Оно должно поддерживать в зале температуру воздуха в пределах 15-16 °С.
Работающие ЭВМ и мини ЭВМ могут являться источниками шума на предприятиях. Шум неблагоприятно действует на организм человека, вызывая различные физиологические отклонения в организме, психологические заболевания и снижает работоспособность. Утомление пользователей и операторов ЭВМ из-за шума увеличивает число ошибок при работе, способствует возникновению травм.