Смекни!
smekni.com

Компьютерное моделирование технологических процессов (стр. 9 из 16)

С точки зрения технически подготовленного пользователя Linux представляет отличный шанс "поковыряться" в операционной системе. Вам полностью доступен исходный код операционной системы, что само по себе является мощным учебным пособием, которое так и тянет опробовать на практике. В результате уже сегодня вы можете воспользоваться высокопроизводительными трассировщиками для мультипликации, спектроанализаторами на базе Sound Blaster, различными компиляторами (чем, например, плохи Ада или CommonLisp?) и играми (уже реализован DOOM) и прочими продуктами. Для новичков, конечно же, предпочтительными вариантами являются OS/2, и в меньшей степени, Windows NT.

Простой и понятный интерфейс OS/2 является серьезным побудительным мотивом, в то время как NT привлекает за счет своей мощи. Но, в то же время следует признать, что наибольший комфорт пользователь ощущает в старой доброй Windows 3.1, а также при работе с Norton Commander.

Процесс установки 32-разрядных операционных систем и их конфигурирование может оказаться процессом далеко не тривиальным.

Подводя итоги, отметим, что Linux оказывается неожиданно мощной системой, которая разработана неорганизованной группой программистов-любителей. Идеи положенные в его основу проверены временем. Количество и качество свободно распространяемых приложений просто завораживает. И если накнец будет завершен проект Wine, позволяющий запускать Windows-приложения в среде X/Window, Linux получит дополнительный козырь в борьбе с коммерческими операционными системами. Возможности этой системы открывают все новые и новые пользователи. И с эволюционным развитием всех трех систем наблюдается устойчивый рост количества пользователей Linux.

Компьютерное моделирование

Прежде чем приступить к компьютерному моделированию технологического процесса, необходимо знать простейшие математические уравнения для его проведения начнем с проверки воспроизводимости опыта.

Проверим воспроизводимость опытов

Убедиться в том, что опыты воспроизводимы, т. е. результаты опытов, проведенных в одинаковых условиях, близки друг к другу. Для этой цели проводят несколько серий параллельных опытов. Условия реализации опытов каждой серии — одинаковы, а разных серий — отличаются друг от друга. Однако все опыты проводятся в рассматриваемой области изменения влияющих факторов. Результаты этих опытов сводят в таблицу табл. 10. Количество опытов во всех сериях должно быть одинаковым.

Для каждой серии параллельных опытов вычисляют среднее арифметическое значение функции отклика

где

— номер серии;
— число параллельных опытов, проведенных при одинаковых условиях.

Затем вычисляют для каждой серии параллельных опытов величину, называемую оценкой дисперсии:


Среди всех оценок дисперсий находят наибольшую. Мы обозначим ее через

аблица 10Эксперимент для проверки воспроизводимости опытов

Номер серии опытов Результаты параллельных опытов Средние значения Оценки дисперсии

Затем находят отношение наибольшей из оценок дисперсий к сумме всех оценок дисперсий:

Таблица11Критические значения критерия Кохрена

Число серий опытов (число оценок дисперсий)
1 2 3 4
2 0,999 0,975 0,939 0,906
3 0,967 0,871 0,798 0,746
4 0,907 0,768 0,684 0,629
5 0,841 0,684 0,598 0,544

Величина Gp называется расчетным значением критерия Кохрена. Критические, т. е. предельно допустимые значения критерия Кохрена G, приведены в табл. 11.

Для нахождения Gнеобходимо знать общее число N оценок дисперсий и так называемое число степеней свободы

, связанных с каждой из них, причем

Опыты считаются воспроизводимыми, когда выполняется условие

Если опыты невоспроизводимы, то можно попытаться достигнуть воспроизводимости путем выявления и устранения источников нестабильности эксперимента, а также засчет использования более точных измерительных приборов.

Наконец, если никакими способами невозможно обеспечить воспроизводимость, то математические методы планирования к такому эксперименту применять нельзя.

Если при проведении эксперимента опыты дублируют и пользуются средними значениями функции отклика

то при обработке экспериментальных данных следует использовать
В тех случаях, когда из-за недостатка времени, большой трудоемкости или высокой стоимости эксперимента опыты не дублируют, при обработке экспериментальных данных используют

Таким образом, вычисления, связанные с проверкой воспроизводимости опытов, достаточно просты. Для их проведения достаточно использовать микрокалькулятор.


Полный факторный эксперимент

Под математическим описанием технологического процесса обычно понимают систему уравнений, связывающих функции отклика с влияющими факторами. В простейшем случае это может быть одно уравнение. Часто математическое описание называют математической моделью.

С помощью математических методов планирования эксперимента можно получить математическую модель технологического процесса даже при отсутствии сведений о механизме его протекания. Это в ряде случаев бывает очень полезно.

Рис. 21 Введение кодированных переменных

На основе планирования эксперимента возможно моделировать химический состав продукта, его выход, усвояемость и др. показатели качества продукта или правильным термином «факторы».

Математические модели, получаемые с помощью методов планирования эксперимента, принято называть экспериментально-статистическими.

Метод полного факторного эксперимента дает возможность получить математическое описание пищевого технологического процесса в некоторой области факторного пространства, лежащей в окрестности выбранной точки с координатами

где
- число факторов).

Перенесем начало координат факторного пространства в данную точку рис. 21. С этой целью введем новые переменные величины

где

— выбранный нами масштаб по оси

Величины

не имеют размерностей и называются кодированными переменными.

С помощью полного факторного эксперимента ищут математическое описание технологического процесса в виде уравнения

В него входит свободный член

члены в виде произведений коэффициентов регрессии
на
и члены, содержащие парные произведения кодированных переменных. Таким образом, это — неполное квадратное уравнение.

Все факторы в ходе полного факторного эксперимента варьируют на двух уровнях, соответствующих значениям кодированных переменных

и
.

В табл. 13 приведены условия опытов полного двухфакторного эксперимента. Часть таблицы, обведенная штриховыми линиями, называется матрицей планирования.

Таблица 13 Условия полного двухфакторного эксперимента

Номер опыта Факторы Функция отклика
X1
X2
1 -1 -1 y1
2 +1 -1 y2
3 -1 +1 y3
4 +1 +1 y4

Матрица содержит полный набор всех возможных комбинаций уровней варьирования факторов. Отсюда полный факторный эксперимент получил свое название.

Как следует из рис. 22, результаты опытов, приведенные в табл. 13, соответствуют на факторной плоскости вершинам квадрата с центром в начале координат.