Міністерство освіти та науки України
Вінницький національний технічний університет
Інститут автоматики, електроніки та комп’ютерних систем управління
Факультет автоматики та комп’ютерних систем управління
Кафедра Метрології та промислової автоматики
Курсовий проект
з курсу “Проектування випробувального обладнання та його метрологічна атестація"
КОМП’ЮТЕРНИЙ ЗАСІБ ВИМІРЮВАННЯ ТИСКУ І ТЕМПЕРАТУРИ У КЛІМАТИЧНІЙ КАМЕРІ
Виконав: ст. гр.1АМ-04
Пісковий С.В.
Перевірив: к. т. н., доц. каф. МПА
Кулаков П.І.
ВНТУ - 2009
Зміст
Вступ
1. Методи та засоби вимірювання тиску і температури
1.1 Методи вимірювання тиску
1.2 Методи вимірювання температури
2. Розробка структурної схеми комп’ютерного засобу вимірювання тиску і температури у кліматичній камері
3. Розробка електричної принципової схеми комп’ютерного засобу вимірювання тиску і температури у кліматичній камері
4. Електричні розрахунки
4.1 Електричний розрахунок джерела живлення
4.2 Електричний розрахунок тактового генератора мікроконтролера
5. Розрахунок похибки вимірювання тиску і температури у кліматичній камері
Висновок
Література
Доповнення персональних комп’ютерів (мікроЕОМ) набором змінних плат (аналого-цифровим і цифро-аналоговим інтерфейсом) перетворює комп’ютери на могутній засіб вимірювання з десятками вимірювальних функцій при відповідному програмному забезпеченні. Такі засоби вимірювання називаються комп’ютерно-вимірювальними системами (КВС).
Застосування персональних комп’ютерів (ПК) для розв’язання вимірювальних завдань визначається трьома факторами:
складом технічних засобів, що визначають конфігурацію ПК;
наявністю перетворювачів (АЦП, ЦАП тощо), конструктивно сумісних із системним каналом ПК;
обсягом відповідного програмного забезпечення (як системного, так і прикладного), орієнтованого на розв’язання даного вимірювального завдання.
Більше того, КВС за потенціальними можливостями значно багатша свого попередника - вимірювального приладу. Будучи забезпеченою комплектами плат відповідного призначення, а також необхідним складом програмного забезпечення, персональна ЕОМ стає багатоцільовою вимірювальною системою. Маючи розвинене програмне забезпечення у вигляді спеціалізованих операційних систем із мовами високого рівня, векторну систему переривання, засоби прямого доступу до пам’яті, єдиний системний канал, набір уніфікованих інтерфейсів, можна організувати складні системи з управлінням в реальному масштабі часу.
Вимірювання і реєстрація тиску широко розповсюджені як в промисловості, так і в повсякденному житті: метеорологічні барометри показують атмосферний тиск, медичні тонометри - тиск у манжеті. Не слід забувати і о висотомірах (альтиметрах), які, по суті, представляють собою ті ж самі барометри, але зі спеціальною шкалою.
Практично усі сенсори тиску відносяться до класу параметричних перетворювачів. У параметричних перетворювачах неелектрична величина перетворюється на приріст параметра електричного кола (R, L, C, M), тому особливістю роботи таких перетворювачів є потреба в додатковому джерелі енергії. Основними видами параметричних перетворювачів, які застосовуються при вимірюванні тиску є тензорезистивні, ємнісні і індуктивні сенсори. Проте інколи використовуються і генераторні перетворювачі. У генераторних перетворювачах вхідна величина перетворюється у вихідний сигнал, який має енергетичні властивості.
Тензометричний сенсор або тензометр - це резистивний елемент, електричний опір якого змінюється при механічній деформації. Це явище називається п’єзоефектом. Деформація може бути повздовжньою, поперечною або деформацією форми.
В основу принципу їх дії покладена зміна активного опору провідника при його деформації. Це підтверджується наступною формулою:
(1.1)В більшості тензометричних сенсорів використовують чотири тензометра, які утворюють схему моста Уітстона.
Широко застосовувані нині наклеювані дротові тензорезистори - це тонкий зигзагоподібний дріт, який наклеюється на еластичну смужку (підкладку). Тензорезистори наклеюються на досліджуваний об’єкт так, щоб вони разом із ним зазнавали деформації стискання або розтягування.
Принципово нові можливості у розвитку тензорезисторних датчиків на основі напівпровідникових чутливих елементів відкрилися з розробкою і дослідженням структур типу “кремній на діелектрику". Із них найбільш вивчена і технологічно освоєна структура “кремній на сапфірі". Це тонка монокристалічна плівка кремнію, вирощена на монокристалічній сапфіровій підкладці з певною кристалографічною орієнтацією. Такі перетворювачі мають хороші пружні властивості, малу похибку гістерезису, широкий діапазон вимірюваних деформацій.
В ємнісних перетворювачах використовується залежність ємності конденсатора від розмірів, взаємного розміщення його обкладинок і діелектричної проникності середовища між ними.
В ідеальному випадку ємність плоского конденсатора
(1.2)З цієї формули випливає, що ємність плоского конденсатора збільшуватиметься при зростанні діелектричної проникності середовища e і площі пластин S і зменшуватиметься зі збільшенням відстані між пластинами d. Отже, всі фізичні величини, які безпосередньо або через допоміжні фактори будуть впливати на змінні e, S і d, можна виміряти за допомогою ємнісних датчиків. Останні можуть мати найрізноманітніше конструктивне виконання: дві чи три плоскі пластини, циліндр у циліндрі тощо.
Рисунок 1.1 - Ємнісний перетворювач
Таким чином, під ємнісним датчиком розуміють систему електродів, ємність яких однозначно залежить від значення заданої фізичної величини.
Чутливість ємнісних перетворювачів з площинними електродами є лінійною функцією зміни площі взаємодії електродів і зміни діелектричної проникності середовища між ними:
(1.3)У той самий час чутливість відносної відстані між електродами є нелінійною функцією:
(1.4)Основні переваги ємнісних датчиків - висока чутливість; відсутність рухомих деталей, які труться; простота конструкції; мала інерційність. До їх недоліків слід віднести вплив зовнішніх електричних полів, паразитних ємностей, температури і вологості.
Індуктивні перетворювачі із змінною довжиною повітряного зазора, в них використовується залежність індуктивності L від довжини повітряного зазора d. Якщо знехтувати опором магнітопровода, незначним порівняно з магнітним опором зазора, а також втратою потужності в магнітопроводі, то одержимо
, (1.5)де m0 - магнітна постійна;
w - число витків котушки;
S - ефективна площа повітряного зазора.
Рисунок 1.3 - Індуктивний перетворювач із змінною довжиною повітряного зазора
Як наслідок індуктивний перетворювач із змінною довжиною повітряного зазора є нелінійним перетворювачем, залежність L від довжини зазора d близька до гіперболічної.
З достатнім для практики рівнем наближення можна вважати його лише при малих відносних змінах довжини повітряного зазора Dd/d. У реальних конструкціях перетворювачів відносна зміна зазора Dd/d = 0,1...0,15 при нелінійності характеристики 1-3%. Тому такі перетворювачі застосовуються для перетворення невеликих тисків, сил і переміщень.
Диференціальні індуктивні перетворювачі. Значне поліпшення лінійності при одночасному збільшенні чутливості досягається в диференціальних перетворювачах із двома перетворювальними елементами, що мають загальну рухому частину. У них рухомий якір розміщено симетрично відносно обох осердь із початковим зазором , і магнітні опори для потоків, що створюються двома котушками, однакові. Зміна магнітних опорів, що проходить при переміщенні Dd якоря, мають протилежні знаки. При зустрічно-послідовному вмиканні обмоток їх сумарна індуктивність
(1.6)Внаслідок того, що в знаменнику останнього виразу відношення Dd/d знаходиться в квадраті, в диференціальному перетворювачі лінійність характеристики забезпечується в більш широких межах. Через це практично усі індуктивні перетворювачі виконуються диференціальними.
Індуктивні перетворювачі із змінною площею повітряного зазору застосовуються для перетворення переміщень рухомого феромагнітного осердя в діапазоні 5...20 мм. Функція перетворення таких перетворювачів практично лінійна.
Індуктивні перетворювачі плунжерного типу найбільш поширені. В основу дії цих перетворювачів покладено зміну магнітного опору ділянок розсіювання магнітного потоку, а отже, й індуктивності котушки при переміщенні феромагнітного рухомого елемента (плунжера) всередині котушки. Найчастіше застосовуються диференціальні плунжерні перетворювачі з магнітопроводом. Плунжерні перетворювачі мають, як правило, лінійні характеристики і забезпечують перетворення переміщень від кількох міліметрів до кількох десятків сантиметрів.
В залежності від технології, що використовується, сенсор тиску без електронної частини може бути і дуже дорогим, і відносно дешевим. Економічні сенсори, побудовані на основі кристалу кремнію, були настільки вдосконалені, що тепер параметри професійного рівня можна отримати, придбавши виріб приблизно за 25 доларів. Такий сенсор складається з двох основних частин: герметичного корпуса, зазвичай оснащеного штуцерами, які дозволяють під’єднувати гнучкі трубки, і дуже незвичайного напівпровідникового кристала. На одній і тій самій кремнієвій пластині виконані і класичні електронні компоненти, і струнні сенсори натягу.