Электролюминесцентные мониторы работают на принципе люминесценции вещества при воздействии на него электрического поля. Люминесцентное вещество распыляется на внутренней поверхности одной из пластин с координатной сеткой. Напряжение на координатные шины подается такое, чтобы на пересечении координатных шин создавалось электрическое поле, достаточное для возбуждения люминофора.
Наибольшее распространение получили мониторы на электронно-лучевых трубках. Электронно-лучевая трубка (ЭЛТ) представляет собой электровакуумный прибор в виде стеклянной колбы, дно которой является экраном. В колбе, из которой удален воздух, расположены электроды: электронная пушка (катод с электронагревательным элементом), анод, вертикально и горизонтально отклоняющие пластины и сетка. Снаружи на ЭЛТ установлена фокусирующая система. Внутренняя поверхность экрана покрыта люминофором, который светится при попадании на него потока электронов. Катод, поверхность которого покрыта веществом, легко отдающим электроны при нагревании, является источником электронов. Возле него образуется “электронное облако”, которое под действием электрического поля анода движется в сторону экрана. По мере приближения к аноду электронный поток увеличивает скорость. Фокусирующая система сжимает поток электронов в тонкий пучок, который с помощью отклоняющих пластин направляется в нужную точку экрана. Сетка служит для регулирования плотности электронного потока. Она расположена гораздо ближе к катоду, чем анод. В зоне ее действия поток электронов имеет небольшую скорость, поэтому она оказывает на поток электронов влияние, сопоставимое с влиянием анода. Сетка может создать электрическое поле, которое тормозит электроны, уменьшает их скорость и плотность потока, движущегося в сторону экрана, и даже может полностью “запереть” трубку, не пропустить поток электронов в сторону экрана.
На отклоняющие пластины ЭЛТ подается пилообразное напряжение, которое отклоняет электронный луч и заставляет его пробегать по всей поверхности экрана, строка за строкой. На поверхности экрана появляется развертка, с помощью которой выводится требуемое изображение - в местах экрана, которые должны оставаться темными, трубка запирается и электронный луч не доходит до поверхности экрана.
В зависимости от формы напряжения, подаваемого на отклоняющие пластины, и способа его получения различаются растровая, матричная и векторная развертки.
Растровая развертка представляет собой набор сплошных горизонтальных линий, заполняющих весь экран. Она формируется с помощью аналоговых приборов - генераторов пилообразного напряжения, отдельно - для строк и отдельно для кадров. Этот вид развертки применяется в телевидении.
Матричная развертка по внешнему виду похожа на растровую. Но формируется она с помощью цифровых схем (счетчиков), связанных с отклоняющей системой через цифро-аналоговые преобразователи. В этом случае электронный луч на экране перемещается не непрерывно, а скачками - от одного пиксела к другому. Поэтому он не рисует линию, а высвечивает матрицу точек - пиксел. При такой развертке легко перевести луч в любую заданную точку экрана - надо только в счетчики строк и кадров поместить координаты этой точки.
Векторная развертка используется для рисования сложных фигур с помощью сплошных линий разной формы. Управление вертикальным и горизонтальным отклонением луча в этом случае осуществляется с помощью функциональных генераторов, каждый из которых настроен на прорисовку определенного графического примитива. Состав графических примитивов, из которых строится изображение, определяется наличием функциональных генераторов.
Максимальное количество строк на экране и количество точек в строке образуют разрешающую способность монитора:
· низкую: 320 х 200 (320 пиксел в строке, 200 строк на экране);
· стандартную: 640 х 200,640х350 или 640 х 480;
· высокую: 750 х 348 или 800 х 600;
· особо четкую: 1024 х 768 или 1024 х 1024 и выше.
Разрешающая способность оказывает значительное влияние на качество изображения на экране, но качество изображения зависит и от других характеристик: физических размеров элементов изображения (пиксел, или точек), размеров экрана, частоты развертки, цветовых характеристик и др.
Размер элементов изображения зависит от величины зерен люминофора, напыляемого на экран, которая измеряется в миллиметрах и образует ряд:
0.42; 0.39; 0.31; 0.28; 0.26;... Фактически приведенные цифры характеризуют не диаметр точек люминофора, а расстояние между центрами этих точек.
Размер экрана, имеющего прямоугольную форму, обычно измеряется по диагонали в дюймах (12, 14, 15, 17, 21,...). Для экрана с диагональю 14" длина горизонтальной части экрана составляет около 10", а вертикальной -около 9". При длине строки 10" (т.е. 257.5 мм) и размере зерна 0.42 мм, в строке может разместиться 613 пиксел. Поэтому на мониторе с размером экрана 14" и размером зерна 0.42 мм невозможно получить разрешающую способность более 613 пиксел в строке при 535 пикселных строках на экране;
монитор может обеспечить лишь стандартную разрешающую способность (не более 640 х 480). При размере зерна 0.28мм на 14" мониторе максимально можно получить разрешающую способность 800 х 600 (зато на 15" мониторе размер зерна 0.28 позволяет обеспечить разрешающую способность 1024 х 768).
Необходимо отметить, что большее по размерам зерно имеет большую инерционность - электронный луч дольше “разжигает” такое зерно, но оно и светится дольше. Поэтому в мониторах с большим размером зерна частота регенерации не должна быть высокой (25-30 кадров в секунду достаточно, чтобы изображение “не мерцало” из-за угасания зерен люминофора). При уменьшении размеров зерна уменьшается и его инерционность. Поэтому регенерацию экрана в мониторах с зерном 0.26 и меньше приходится проводить чаще (75-100 раз в секунду). Для того чтобы вывести 100 раз в секунду кадр, содержащий 1000 пиксел в строке и 1000 строк, необходимо обеспечить частоту строчной развертки 100 х 1000 х 1000 = 10* Гц = 100 Мгц; частота кадровой развертки при этом составит 100 х 1000 = 105 Гц = 0.1 Мгц.
Системная организация ЭВМ
В самом общем виде структура ПЭВМ может быть представлена так, как показано на рис. 7, где ОЗУ − оперативная память, а сокращения MCH и ICH у контроллеров памяти и ввода-вывода означают Memory Control Hub и Input-OutputControlHubсоответственно.
Такое представление, конечно, скрывает особенности организации системной шины и способов подключения основных устройств. Данные способы связаны с организацией системной шины и дополнительных интерфейсов и могут различаться в зависимости от поколения ПЭВМ, типа процессора и комплекта микросхем (т.н. чипсета) материнской платы.
Эти различия, главным образом, связаны с теми системными интерфейсами, которые поддерживает материнская плата. Известны следующие виды локальных шин ЭВМ, использующихся для подключения внешних устройств ПЭВМ:
Шина ISA (IndustryStandardArchitecture) использовалась в ПЭВМ, начиная с моделей с процессором 8086 и до Pentium II, в последующих моделях она уже исключена. Шина EISA представляет расширенную модификацию ISA. Шина VLB (VESA Local Bus) использовалась только в процессорах 486. Шина PCI (PeripheralComponentInterconnect) является наиболее распространенным вариантом, иногда сочетаемым с шиной ISA для аппаратной совместимости с более ранними устройствами. Для подключения видеоадаптера используют и более быстрый вариант − AGP (Advanced Graphical Port), а в более новых ПЭВМ − и шину PCI-Express.
Наличие этих шин и интерфейсов в ПЭВМ обеспечивают контроллеры, называемые также мостами или хабами (hub), связывающие системную шину с соответствующей локальной шиной (например, системная шина – шина PCI), или различные интерфейсы (например, шина PCI − шина ISA).
Эти контроллеры могут интегрировать в себе узлы, которые обеспечивают и подключение жестких дисков. Двумя наиболее распространенными вариантами управления жестким диском являются интерфейсы ATA (AT Attachment for Disk Drives − подключение дисководов к PC AT), точнее, его модификации ATAPI (ATA Package Interface) и Serial ATA, а также SCSI (SmallComputerSystemInterface).
С интерфейсом ATA связаны еще два названия: IDE (Integrated Device Electronics), указывающее на особенности организации контроллера жесткого диска, и DMA (Direct Memory Access) или его более новая модификация Ultra DMA, определяющие режим обмена данными с оперативной памятью. (Другим режимом обмена, используемым в этом интерфейсе, является программный ввод-вывод − PIO, чаще использовавшийся для подключения CD ROM.) Интерфейс ATA первоначально предназначался для подключения жестких дисков к шине ISA.
Однако, при наличии шины PCI организуется связь IDE диска с данной шиной. Интерфейс ATA обеспечивает передачу данных со скоростью до 133 Мбайт/с, а его последовательный вариант – до 150 Мбайт/с Интерфейс SCSI обеспечивает скорости передачи данных до 160 Мбайт/с и также может использоваться не только для подключения жестких дисков, но и других устройств. Однако он требует дополнительных контроллеров и является более дорогим вариантом.
Внешние устройства типа клавиатуры, принтера, гибкого диска, мышки также требуют контроллеров для своего подключения. Обычно эти контроллеры интегрированы в единый узел, который и обеспечивает их связь с системной шиной.
Собственно системный контроллер организует связь процессора с оперативной памятью, внешним кэшем (если таковой имеется), шиной PCI, выполняет функции контроллера оперативной памяти, контроллера кэша и контроллера прерываний.