Смекни!
smekni.com

Криптосистеми (стр. 1 из 2)

Криптосистеми


1. ОБЧИСЛЮВАЛЬНО СТІЙКІ ТА ЙМОВІРНО СТІЙКІ КРИПТОСИСТЕМИ

Криптоаналітик знає криптиосистему, може мати апаратуру, може перехоплювати криптограми. При цьому, криптоаналітик може визначити:

- Мі → Сj – ? ;

- Kij → Мі → Сj – ?

Атака при відомих парах повідомлень та криптограм

Мі → Сj; Kij – ?

Атака з вибором повідомлення

Криптоаналітик знає Мі та алгоритм зашифровування

Мі →

Kij

→ Сj

і , Сj) → Kij – ?

Атака з вибором криптограм

Сj →

Kij

→ Мі

j , Мі) → Kij

Адаптивна атака

Така атака, при якій може здійснюватись зашифровування та розшифровування

Визначення обчислювально стійкої криптосистеми та умови реалізації

Обчислювально стійка криптосистема визначається як така, у якої

.

Така система може будуватись як і безумовно стійка криптосистема. У обчислювально стійких криптосистемах замість ключової послідовності Кi використовують Гi.

Процес – процес гамаутворення (шифроутворення).

Розшифровування здійснюється аналогічно з безумовно стійкою криптосистемою:

Ключ повинен породжуватись рівно ймовірно, випадково та незалежно. Як правило, більшість пристроїв працюють з бітами.

,

.

Функція Ψ, для забезпечення необхідного рівня стійкості, повинна задовольняти ряду складних умов:

1) Період повторення повинен бути не менше допустимої величини:


2)Закон формування гами повинен забезпечувати „секретність” гами. Тобто, Гі повинна протистояти криптоаналітику

В якості показника оцінки складності гами використовується структурна скритність:

,

,

де

– повний період;

– кількість бітів, які криптоаналітик повинен одержати, щоб зробити обернення функції Ψ, тобто знайти ключ.

3)Відновлюваність гами в просторі та часі.

4) Відсутність колізії, тобто, співпадання відрізків гами.

Розглянута система відноситься до класу симетричних.

В якості оцінки стійкості використовується така множина параметрів

.

1.

=128, 192, 256, 512

.

2.

біт.

3. Безпечний час для атаки типу „груба сила”:

.

4. Відстань єдності шифру

. Можна показати, що для обчислювально стійкої криптосистеми справедливо співвідношення:

,

де

– умовна апостеріорна ентропія криптоаналітика;

– ентропія джерела ключів;

l – довжина зашифрованого тексту або гами;

d – збитковість мови (під надмірністю d розуміється ступінь корельованості (залежності) символів у мові і не порівняно ймовірностні їхньої появи в повідомленні);

m – розмірність алфавіту.

Криптоаналіз вважається успішним, якщо

=0.

Фізичний зміст l0 – мінімальна кількість гами шифрування, яку необхідно достовірно перехопити, щоби мати можливість розв’язати задачу визначення ключа, або обернення функції Ψ. Якщо n < l0 , то однозначно повідомлення.

Імовірно стійка криптосистема відноситься до класу асиметричної:


При відомому одного з цих ключів складність повинна бути не нижче ніж субекспоненціальна

.

В залежності від виду двохключових перетворень криптоперетворення можна розділити на:

1) криптоперетворення в кільцях. Задача факторизації модуля на два простих числа:

2) криптоперетворення в полях Галуа GF(p). Задача розв’язання обернення функції:

,

де

– відкритий ключ;

– первісний елемент;

– особистий ключ;

Р – просте число.

3) криптоперетворення в групах точок еліптичних кривих E(GF(q)). Задача розв’язання дискретного логарифму:

,

де d – особистий ключ;

Q – відкритий ключ;

G – базова точка;

q – поле.

2. МАТЕМАТИЧНІ МОДЕЛІ КРИПТОПЕРЕТВОРЕНЬ

Криптоперетворення розподіляються на:

- симетричні, якщо виконується умова:

,

або ключ обчислюється не нижче ніж з поліноміальною складністю;

-асиметричні, якщо виконується умова:

,

або ключ може бути обчислений при знанні іншого не нижче ніж з субекспоненційною складністю.

Поліноміальною складністю називається така складність, при якій n входить в основу:

Субекспоненційною складністю називається така складність, при якій n входить в показник:

.

Основною ознакою для таких криптоперетворень являється ключ (або ключі). Кожне криптоперетворення задається прямим і зворотнім перетворенням:

Основні асиметричні криптоперетворення по математичному базису:

1)перетворення в полях GF(p);

2)перетворення в кільцях NZ;

3)перетворення на еліптичних кривих EC.

Основні симетричні криптоперетворення по математичному базису:

1) афінні:

,

де А – деяка матриця;

2) нелінійні: не можна представити у вигляді лінійної функції.

В залежності від виду симетричні криптоперетворення діляться на:

- підстановка;

- гамування;

- управляємий зсув бітів;

- перестановка і інші елементарні перетворення.

Сутність асиметричних криптоперетворень в кільці

Нехай Мі – блок інформації, який треба захистити. Представимо цей блок у вигляді числа lM. Використовується ключова пара (Ек, Dк), що породжується випадково.

Пряме перетворення:

,

де

- функція Ейлера.

.

Зворотне перетворення:

,

т.ч. перетворення зворотне і однозначне.

Стійкість проти атак в кільці визначається складністю факторизації числа N на прості числа P та Q.

Сутність асиметричних криптоперетворень в полі

Нехай є просте поле Галуа GF(p). Для кожного p існує множина первісних елементів:

.

Кожний первісний елемент породжує поле:

.

Криптоперетворення пов’язані з побудуванням пари ключів. Нехай є два користувачі А та В.


А В
ХА ХВ

де ХА, ХВ – випадкові ключі довжиною lk;