Смекни!
smekni.com

Размер тега кэш-памяти зависит от трех основных факторов: объема кэш-памяти, максимального кэшируемого объема оперативной памяти, а также ассоциативности кэш-памяти. Математически этот размер рассчитывается по формуле:

Stag=log2(Smem*A/Scache),

где Stag - размер одного тега кэш-памяти, в битах; Smem - максимальный кэшируемый объем оперативной памяти, в байтах; Scache - объем кэш-памяти, в байтах; А - ассоциативность кэш-памяти, в каналах.

Отсюда следует, что для системы с 1-Гбайт оперативной памятью и 1-Мбайт кэш-памятью с двухканальной ассоциативностью потребуется 11 бит для каждого тега. Примечательно, что собственно размер строки кэш-памяти никак не влияет на размер тега, но обратно пропорционально влияет на количество тегов. Следует понимать, что размер строки кэш-памяти не имеет смысла делать меньше разрядности системной шины данных, но многократное увеличение размера приведет к чрезмерному засорению кэш-памяти ненужной информацией и излишней нагрузке на системную шину и шину памяти. Кроме того, максимально кэшируемый объем кэш-памяти не обязан соответствовать максимально возможному устанавливаемому объему оперативной памяти в системе. Если возникнет ситуация, когда оперативной памяти окажется больше, чем может быть кэшировано, то в кэш-памяти будет присутствовать информация только из нижнего сегмента оперативной памяти. Именно такой была ситуация с платформой Socket7/Super7. Наборы микросхем для этой платформы позволяли использовать большие объемы оперативной памяти (от 256 Мбайт до 1 Гбайт), в то время как кэшируемый объем часто был ограничен первыми 64 Мбайт (речь идет о B-cache, находящемся на системной плате) по причине использования дешевых 8-бит микросхем теговой SRAM (2 бита из которых резервировалось под указатели действительности и измененности строки). Это приводило к ощутимому падению производительности.

Какая информация содержится в тегах кэш-памяти? Это информация об адресах, но как можно точно отобразить расположение строки кэш-памяти на всем пространстве кэшируемого объема оперативной памяти, используя столь незначительное количество адресных битов? Это понятие является фундаментальным в понимании принципов функционирования кэш-памяти. Рассмотрим предыдущий пример, с 11-бит тегами. Учитывая логическое сегментирование благодаря двухканальной ассоциативности, можно рассматривать данную кэш-память как состоящую из двух независимых сегментов по 512 Кбайт каждый. Представим оперативную память как состоящую из "страниц" по 512 Кбайт каждая - их будет соответственно 2048 штук. Далее, Iog2 (2048) = 11 (основание логарифма равно 2, так как возможны только два логических состояния каждого бита). Это означает, что фактически тег - не номер отдельной строки кэш-памяти, а номер "страницы" памяти, на которую отображается та или иная строка. Другими словами, в пределах "страницы" сохраняется прямое соответствие ее "строк" с соответствующими строками кэш-памяти, т. е. п-я строка кэш-памяти соответствует n-й "строке" данной "страницы" оперативной памяти.

Рассмотрим механизм работы кэш-памяти разных видов ассоциативности. Допустим, имеется абстрактная модель с восемью строками кэш-памяти и 64 эквивалентными строками оперативной памяти. Требуется поместить в кэш строку 9 оперативной памяти (заметим, что все строки нумеруются от нуля и по возрастающей). В модели с прямым отображением эта строка может занять только одно место: 9 mod 8=1 (вычисление остатка от деления нацело), т. е. место строки 1. Если взять модель с двухканальной ассоциативностью, то эта строка может занять одно из двух мест: 9 mod 4=1, т. е. строку 1 любого канала (сегмента). Полноассоциативная модель предоставляет свободу для размещения, и данная строка может занять место любой из восьми имеющихся. Другими словами, фактически имеется 8 каналов, каждый из которых состоит из 1 строки.

Ни одна из вышеуказанных моделей не позволит, разумеется, поместить в кэш больше строк, чем он физически в состоянии разместить, они лишь предлагают различные варианты, различающиеся балансом эффективности использования кэша и скорости доступа к нему.

Типы подключения кэш-памяти

Количество портов чтения-записи кэш-памяти - показатель того, сколько одновременных операций чтения-записи может быть обработано. Хотя жестких требований и нет, определенное соответствие набору функциональных устройств ЦП должно прослеживаться, так как отсутствие свободного порта во время исполнения команды приведет к вынужденному простою.

Существует два основных способа подключения кэшпамяти к ЦП для чтения: сквозной и побочный (Look-Through и Look-Aside). Суть первого в том, что при необходимости данные сначала запрашиваются у контроллера кэш-памяти самого высокого уровня, который проверяет состояние подключенных тегов и возвращает либо нужную информацию, либо отрицательный ответ, и в этом случае запрос перенаправляется в более низкий уровень иерархии кэш-памяти или в оперативную память. При реализации второго способа чтения запрос одновременно направляется как кэш-контроллеру самого высокого уровня, так и остальным кэш-контроллерам и контроллеру оперативной памяти. Недостаток первого способа очевиден: при отсутствии информации в кэше высокого уровня приходится повторять запрос, и время простоя ЦП увеличивается. Недостаток второго подхода - высокая избыточность операций и, как следствие, "засорение" внутренних шин ЦП и системной шины ненужной информацией. Логично предположить, что если для кэшей L1 оптимальна сквозная схема, то для T-cache или B-cache побочная схема может оказаться более выгодной. Для S-cache выбор неоднозначен.

Различают также локальный и удаленный кэш. Локальным называют кэш, находящийся либо в ядре ЦП, либо на той же кремниевой подложке или в корпусе ЦП, удаленным - размещенный на системной плате. Соответственно локальным кэшем управляет контроллер в ядре ЦП, а удаленным - НМС системной платы. Локальный кэш с точки зрения быстродействия предпочтительнее, так как интерфейс к удаленному кэшу обычно мультиплексируется с системной шиной. С одной стороны, когда другой ЦП захватывает общую системную шину или какой-либо периферийный контроллер обращается к памяти напрямую, удаленный кэш может оказаться временно недоступным. С другой - такой кэш легче использовать в многопроцессорных системах.

Существуют два распространенных способа записи в кэш: сквозной (Write-Through) и обратной (Write-Back) записи. В первом случае информация одновременно сохраняется как в текущий, так и в более низкий уровень иерархии кэш-памяти (или прямо в оперативную память при отсутствии такового). Во втором - данные сохраняются только в текущем уровне кэш-памяти, при этом возникает ситуация, когда информация в кэше и оперативной памяти различается, причем последняя становится устаревшей. Для того чтобы при сбросе кэша информация не была необратимо потеряна, к каждой строке кэша добавляется "грязный" бит (dirtybit, иначе известный как modified). Он нужен для обозначения того, соответствует ли информация в кэше информации в оперативной памяти, и следует ли ее записать в память при сбросе кэша.

Также следует упомянуть способ резервирования записи (writeallocation). При записи данных в оперативную память часто возникает ситуация, когда записываемые данные могут скоро понадобиться, и тогда их придется довольно долго подгружать. Резервирование записи позволяет частично решить эту проблему: данные записываются не в оперативную память, а в кэш. Строка кэша, вместо которой записываются данные, полностью выгружается в оперативную память. Так как вновь записанных данных обычно недостаточно для формирования полной строки кэша, из оперативной памяти запрашивается недостающая информация. Когда она получена, новая строка записывается, и тег обновляется. Определенных преимуществ или недостатков такой подход не имеет - иногда это может дать незначительный прирост производительности, но также и привести к засорению кэша ненужной информацией.

Сегментирование кэш-памяти и быстродействие жестких дисков

В первой части данного обзора мы познакомились с режимом PerformanceMode у SCSI-дисков SeagateCheetah со скоростью вращения 10 000 и 15 000 об./мин — Cheetah 10K.7 и Cheetah 15K.4. Напомню, что утилита SeagateSeaToolsEnterprise позволяет пользователю управлять политикой кэширования и, в частности, переключать новейшие SCSI-диски Seagate между двумя разными моделями кэширования — DesktopMode и ServerMode. Этот пункт в меню SeaTools носит название PerformanceMode (PM) и может принимать два значения — On (DesktopMode) и Off (ServerMode). Отличия между этими двумя режимами чисто программные — в случае DesktopMode кэш-память жесткого диска разбивается на фиксированное число сегментов постоянного (одинакового) объема и далее они используются для кэширования обращений при чтении и записи. Причем, в отдельном пункте меню пользователь даже может сам назначать количество сегментов (управлять сегментированием кэша): например, вместо дефолтных 32-х сегментов проставить другое значение (при этом объем каждого сегмента пропорционально уменьшится).

В случае же ServerMode сегменты буфера (кэша диска) могут динамически (пере)назначаться, меняя при этом свой размер и количество. Микропроцессор (и микропрограмма) диска сами динамически оптимизируют количество (и емкость) сегментов кэш-памяти в зависимости от поступающих для исполнения на диск команд.