Смекни!
smekni.com

Линейное программирование (стр. 5 из 8)

В случае минимизации целевой функции в этом алгоритме необходимо изменить только условие оптимальности: в качестве новой базисной переменной следует выбирать переменную, которая в

-уравнении имеет наибольший положительный коэффициент. Условия допустимости в обоих случаях одинаковы.

4.2.3. Искусственное начальное решение

Для получения начального базисного решения мы использовали остаточные переменные. Однако когда исходное ограничение записано в виде равенства или имеет знак, нельзя сразу же получить НДБР. Поэтому были разработаны два метода, в которых используется «штрафование» искусственных переменных.

1. Метод больших штрафов (М-метод)

Рассмотрим линейную модель, приведённую к стандартной форме:

минимизировать

при ограничениях

В первом и втором уравнениях нет переменных, исполняющих роль остаточных. Поэтому введём в каждое из этих уравнений по одной из искусственных переменных R1 и R2:

За использование этих переменных в составе целевой функции можно ввести штраф, приписывая им достаточно большой положительный коэфффициент

. Получим линейную модель:

минимизировать

при ограничениях

Теперь если

,то начальное допустимое решение:

Метод оптимизации, направленный на нахождение минимального значения

, приведёт к тому, что переменные R1 и R2 в оптимальном решении обратятся в нуль.

Необходимо переформулировать условие задачи, чтобы представить процесс решения в удобной табличной форме. Подставив в целевую функцию полученные из соответствующих ограничений выражения для искусственных переменных

получим выражение для

:

Решение представлено в сводной таблице:

Итерация
Решение Отношение
-
-
-
-
-
-
-
-

2. Т.к. целевая функция минимизируется, переменные, включаемые в базис, должны иметь наибольшие положительные коэффициенты в

-уравнении. Оптимум достигается, когда все небазисные переменные имеют коэффициенты в
-уравнении. Оптимальному решению соответствует точка
.