т.е. определяется минимальный выигрыш для игрока 1 при условии, что он примет своюi-ю чистую стратегию, затем из этих минимальных выигрышей отыскивается такая стратегия i = iо, при которой этот минимальный выигрыш будет максимальным, т.е. находится
Определение. Число
Игрок 2 при оптимальном своём поведении должен стремится по возможности за счёт своих стратегий максимально уменьшить выигрыш игрока 1. Поэтому для игрока 2 отыскивается
затем игрок 2 отыскивает такую своюj = j1стратегию, при которой игрок 1 получит min выигрыш, т.е. находит
Определение.Число
Другими словами, применяя свои чистые стратегии игрок 1 может обеспечить себе выигрыш не меньше
Определение.Если в игре с матрицей А
u =
Седловая точка– это пара чистых стратегий (iо,jо) соответственно игроков 1 и 2, при которых достигается равенство
гдеi, j– любые чистые стратегии соответственно игроков 1 и 2;(iо,jо)– стратегии, образующие седловую точку.
Таким образом, исходя из (3), седловой элемент
2.3 Решение матричных игр в смешанных стратегиях путём сведения к задаче линейного программирования
Исследование в матричных играх начинается с нахождения её седловой точки в чистых стратегиях. Если матричная игра имеет седловую точку в чистых стратегиях, то нахождением этой седловой точки заканчивается исследование игры. Если же в игре нет седловой точки в чистых стратегиях, то можно найти нижнюю и верхнюю чистые цены этой игры, которые указывают, что игрок 1 не должен надеяться навыигрышбольший, чем верхняя цена игры, и может быть уверен в получении выигрыша не меньше нижней цены игры. Улучшение решений матричных игр следует искать в использовании секретности применения чистых стратегий и возможности многократного повторения игр в виде партии. Этот результат достигается путём применения чистых стратегий случайно, с определённой вероятностью.
Определение.Смешанной стратегией игроканазывается полный набор вероятностей применения его чистых стратегий.
Таким образом, если игрок 1 имеет m чистых стратегий 1,2,...,m,то его смешанная стратегия x– это набор чисел x = (x1, ..., xm)удовлетворяющих соотношениям
xi>= 0 (i= 1,m),
Аналогично для игрока 2, который имеет n чистых стратегий, смешанная стратегия y– это набор чисел
y = (y1, ..., yn), yj>= 0, (j= 1,n),
Так как каждый раз применение игроком одной чистой стратегии исключает применение другой, то чистые стратегии являютсянесовместнымисобытиями. Кроме того, они являются единственными возможными событиями.
Чистая стратегия есть частный случай смешанной стратегии. Действительно, если в смешанной стратегии какая-либоi-я чистая стратегия применяется с вероятностью 1, то все остальные чистые стратегии не применяются. И этаi-я чистая стратегия является частным случаем смешанной стратегии. Для соблюдения секретности каждый игрок применяет свои стратегии независимо от выбора другого игрока.
Определение. Средний выигрыш игрока 1 в матричной игре с матрицейАвыражается в виде математического ожидания его выигрышей
E(A, x, y) =
Первый игрок имеет целью за счёт изменения своих смешанных стратегий х максимально увеличить свой средний выигрышЕ(А, х, y), а второй – за счёт своих смешанных стратегий стремится сделатьЕ(А, х, y) минимальным, т.е. для решения игры необходимо найти такие х и y, при которых достигается верхняя цена игры
Аналогичной должна быть ситуация и для игрока 2, т.е. нижняя цена игры должна быть
Подобно играм, имеющим седловые точки в чистых стратегиях, вводится следующее определение: оптимальными смешанными стратегиями игроков 1 и 2 называются такие наборыхо, уо соответственно, которые удовлетворяют равенству
ВеличинаЕ(А, хо ,уо) называется при этомценой игрыи обозначается через u.
Имеется и другое определение оптимальных смешанных стратегий: хо, уоназываются оптимальными смешанными стратегиями соответственно игроков 1 и 2, если они образуют седловую точку:
Е(А, х, уо)<= Е(А, хо, уо)<= Е(А, хо, у)
Оптимальные смешанные стратегии и цена игры называютсярешением матричной игры.
Основная теорема матричных игр имеет вид :
Теорема(о минимаксе).Для матричной игры с любой матрицейАвеличины
Игра m × n в общем случае не имеет наглядной геометрической интерпретации. Ее решение достаточно трудоемко при больших m и n, однако принципиальных трудностей не имеет, поскольку может быть сведено к решению задачи линейного программирования.
Пусть игра m × n задана платежной матрицей p = (aij ), i = 1, 2, ..., m; j = 1, 2, ..., n. Игрок А обладает стратегиями A1 , A2 , ..., Am , игрок В — стратегиями B1 , B2 , ..., Bm . Необходимо определить оптимальные стратегии S*A = ( p*1 , p*2 , ..., p*m ) и S*B = ( q*1 , q*2 , ..., q*n ), где p*i, q*j — вероятности применения соответствующих чистых стратегий Ai , Bj, p*1 + p*2 +...+ p*m =1, q*1 + q*2 +...+ q*n = 1.
Оптимальная стратегия S*A удовлетворяет следующему требованию. Она обеспечивает игроку А средний выигрыш, не меньший, чем цена игры v, при любой стратегии игрока В и выигрыш, равный цене игры v, при оптимальной стратегии игрока B. Без ограничения общности полагаем v > 0: этого можно добиться, сделав все элементы aij ≥ 0. Если игрок А применяет смешанную стратегию S*A = ( p*1 , p*2 , ..., p*m ) против любой чистой стратегии Bj игрока В, то он получает средний выигрыш, или математическое ожидание выигрыша aj = a1j p1 + a2j p2 +...+ am j pm , о = 1, 2, ..., n (т.е. элементы j-го столбца платежной матрицы почленно умножаются на соответствующие вероятности стратегий A1 , A2 , ..., Am и результаты складываются).