Смекни!
smekni.com

Линейное программирование (стр. 5 из 8)

Для оптимальной стратегии S*A все средние выигрыши не меньше цены игры v, поэтому получаем систему неравенств:

(2.3.1)

Каждое из неравенств можно разделить на число v > 0. Введем новые переменные:

x1 = p1/v, x2 = p2/v , ..., pm/v (2.3.2)

Тогда система (2.3.1) примет вид:

(2.3.3)

Цель игрока А — максимизировать свой гарантированный выигрыш, т.е. цену игры v.

Разделив на v ≠ 0 равенство p1 + p2 + ...+ pm = 1 , получаем, что переменные x1 (i = 1, 2, ..., m) удовлетворяют условию: x1 + x2 + ...+ xm = 1/v. Максимизация цены игры v эквивалентна минимизации величины1/v, поэтому задача может быть сформулирована следующим образом: определить значения переменных xi ≥ 0, i = 1, 2, ..., m, так, чтобы они удовлетворяли линейным ограничениям (2.3.3) и при этом линейная функция

Z = x1 + x2 + ...+ xm, (2.3.4)


обращалась в минимум. Это задача линейного программирования. Решая задачу (2.3.3)—( 2.3.4), получаем оптимальное решение p*1 + p*2 + ...+ p*m и оптимальную стратегию SA .

Для определения оптимальной стратегии S*B = (q*1 + q*2 + ...+ q*n) следует учесть, что игрок В стремится минимизировать гарантированный выигрыш, т.е. найти

. Переменные q1 , q2 , ..., qn удовлетворяют неравенствам:

(2.3.5)

которые следуют из того, что средний проигрыш игрока В не превосходит цены игры, какую бы чистую стратегию не применял, игрок А.
Если обозначить

yj = qj/v, j = 1, 2, ..., n, (2.3.6)

то получим систему неравенств:

(2.3.7)

Переменные yj (1, 2, ..., n) удовлетворяют условию

.

Игра свелась к следующей задаче

Определить значения переменных yj ≥ 0, j = 1, 2, ..., n, которые удовлетворяют системе неравенств (2.3.7) и максимизируют линейную функцию

Z' = y1 + y2 + ...+ yn, (2.3.8)

Решение задачи линейного программирования (2.3.6), (2.3.7) определяет оптимальную стратегию S*B = (q*1 + q*2 + ...+ q*n) . При этом цена игры

v = 1 / max, Z' = 1 / min Z (2.3.9)

Составив расширенные матрицы для задач (2.3.3), (2.3.4) и (2.3.7), (2.3.8), убеждаемся, что одна матрица получилась из другой транспонированием:

Таким образом, задачи линейного программирования (2.3.3), (2.3.4) и (2.3.7), (2.3.8) являются взаимно-двойственными. Очевидно, при определении оптимальных стратегий в конкретных задачах следует выбрать ту из взаимно-двойственных задач, решение которой менее трудоемко, а решение другой задачи найти с помощью теорем двойственности.


3. Практическая часть

Постановка задачи: Для производства трёх видов продукции используется три вида сырья. Нормы затрат каждого из видов сырья на единицу продукции данного вида, запасы сырья, а также прибыль с единицы продукции приведены в таблице:

Продукция/сырьё А В С Запасы сырья, ед.
I 4 2 0 ≤19
II 0 1 1 = 8
III 1 2 0 ≤24
Прибыль, ден. ед. 3 7 2 ≥max

Определить план выпуска продукции для получения максимальной прибыли, чтобы сырьё IIвида было израсходовано полностью. Оценить каждый из видов сырья, используемых для производства продукции.

Вид таблицы по заданию поставленной задачи:

Вид сырья Нормы затрат сырья (кг) на единицу продукции
А В С
IIIIII 401 212 010
Цена единицы продукции (руб.) 3 7 2

Решениепоставленной задачи:

Предположим, что производится x1изделийА,

изделийВи

изделийС.Для определения оптимального плана производства нужно решить задачу, состоящую в максимизации целевой функции

3.1.Построим математическую модель задачи:

тогда функция цели:

Z-0 = 3X1 + 7X2 + 2X3 – совокупная прибыль от продажи произведенной продукции, которую требуется максимизировать.

Подсчитаем затраты сырья:

Сырье 1-го типа: 4 х1 + 2 х2 + 0 х3 , по условию затраты не превосходят 19,

Сырье 2-го типа: 0 х1 + 1 х2 + 1 х3, по условию затраты не превосходят 8,

Сырье 3-го типа: 1x1 + 2x2 + 0x3, по условию затраты не превосходят 24.

при следующих условиях:

4 X1 + 2 X2 + 0 X3 + X4 19
0 X1 + 1 X2 + 1 X3 + X5 = 8
1 X1 + 2 X2 + 0 X3 + X6 24

X1, X2, X3 ≥ 0.

4X1+2X2+X4 ≤ 19

X2 + X3 +X5 = 8

X1+ 2X2+X6 ≤24

3.2 Выбираем метод решения и приводим задачу к каноническому виду:

Пришли к задаче линейного программирования:

припишем каждому из видов сырья, используемых для производства продукции.Тогда общая оценка сырья, используемого на производство продукции, составит:

Получили математическую модель. Необходимо максимизировать функцию цели ↓

Z-0 (x1, x2, x3) = 3X1 + 7X2 + 2X3 → max

Введем дополнительные переменные X4, X5, X6.

Z-0= 3 X1 + 7 X2 + 2 X3 -(max)
при системе ограничений:

Преобразуем первое ограничение:

4 X1 + 2 X2 + 0 X3 + X4 = 19
0 X1 + 1 X2 + 1 X3 + X5 = 8
1 X1 + 2 X2 + 0 X3 + X6 = 24

Получили задачу:

4X1+2X2+X4 = 19

X2 + X3 +X5 = 8

X1+2X2 +X6 =24

3.3 Решаем задачу путем сведения к задаче линейного программирования:

Xi≥0 ; 0-Z= -3X1- -7X2- -2X3

Приведем задачу к канонической форме.

Задача линейного программирования записана в канонической форме, если она формулируется следующим образом.

Требуется найти вектор

, доставляющий максимум линейной форме

при условиях

где

Решим задачу симплекс-методом

Строим начальную симплекс-таблицу:

Базисные переменные X1 X2 X3 X4 X5 X6 Свободные члены
X4 4 2 0 1 0 0 19
X5 0 1 1 0 1 0 8
X6 1 2 0 0 0 1 24
0-Z -3 -7 -2 0 0 0 0

Так как в столбце свободных членов нет отрицательных элементов, то найдено допустимое решение. Так как в строке 0-Z есть отрицательные элементы, то полученное решение не оптимально. Для определения ведущего столбца найдем максимальный по модулю отрицательный элемент в строке 0-Z (-7). А ведущая строка та, у которой наименьшее положительное отношение свободного члена к соответствующему элементу ведущего столбца.

Пересчитаем таблицу:

Базисные переменные X1 X2 X3 X4 X5 X6 Свободные члены
X4 4 -2 -2 1 0 0 3
X2 0 1 1 0 1 0 8
X6 1 -2 -2 0 0 1 8
0-Z -3 7 5 0 0 0 56

Так как в столбце свободных членов нет отрицательных элементов, то найдено допустимое решение. Так как в строке 0-Z есть отрицательные элементы, то полученное решение не оптимально. Для определения ведущего столбца найдем максимальный по модулю отрицательный элемент в строке 0-Z (-3). А ведущая строка та, у которой наименьшее положительное отношение свободного члена к соответствующему элементу ведущего столбца.

Тогда каноническую форму задачи ЛП можно представить в следующем матричном виде эквивалентном первоначальному: