Смекни!
smekni.com

Массивно-параллельные суперкомпьютеры серии Cry T3 и кластерные системы класса BEOWULF (стр. 2 из 8)

Процессоры с сокращенным набором команд (RISC). В основе RISC-архитектуры (RISC – Reduced Instruction Set Computer) процессора лежит идея увеличения скорости его работы за счет упрощения набора команд.

Исследования показали, что 33% команд типичной программы составляют пересылки данных, 20% – условные ветвления и еще 16% – арифметические и логические операции. В подавляющем большинстве команд вычисление адреса может быть выполнено быстро, за один цикл. Более сложные режимы адресации используются примерно в 18% случаев. Около 75% операндов являются скалярными, то есть переменными целого, вещественного, символьного типа и т. д., а остальные являются массивами и структурами. 80% скалярных переменных – локальные, а 90% структурных являются глобальными. Таким образом, большинство операндов – это локальные операнды скалярных типов. Они могут храниться в регистрах.

Согласно статистике, большая часть времени тратится на обработку операторов "вызов подпрограммы" и "возврат из подпрограммы". При компиляции эти операторы порождают длинные последовательности машинных команд с большим числом обращений к памяти, поэтому даже если доля этих операторов составляет всего 15%, они потребляют основную часть процессорного времени. Только около 1% подпрограмм имеют более шести параметров, а около 7% подпрограмм содержат более шести локальных переменных.

В результате изучения этой статистики был сделан вывод о том, что в типичной программе доминируют простые операции: арифметические, логические и пересылки данных. Доминируют и простые режимы адресации. Большая часть операндов – это скалярные локальные переменные. Одним из важнейших ресурсов повышения производительности является оптимизация указанных операторов.

В основу RISC-архитектуры положены следующие принципы и идеи. Набор команд должен быть ограниченным и включать только простые команды, время выполнения которых после выборки и декодирования один такт или чуть больше. Используется конвейерная обработка. Простые RISC-команды допускают эффективную аппаратную реализацию, в то время как сложные команды могут быть реализованы только средствами микропрограммирования. Конструкция устройства управления в случае RISC-архитектуры упрощается, и это дает возможность процессору работать на больших тактовых частотах. Использование простых команд позволяет эффективно реализовать и конвейерную обработку данных, и выполнение команд.

Сложные команды RISC-процессором выполняются дольше, но их количество относительно невелико. В RISC-процессорах небольшое число команд адресуется к памяти. Выборка данных из оперативной памяти требует более одного такта. Большая часть команд работает с операндами, находящимися в регистрах. Все команды имеют унифицированный формат и фиксированную длину. Это упрощает и ускоряет загрузку и декодирование команд, поскольку, например, код операции и поле адреса всегда находятся в одной и той же позиции. Переменные и промежуточные результаты вычислений могут храниться в регистрах. С учетом статистики использования переменных, большую часть локальных переменных и параметров процедур можно разместить в регистрах. При вызове новой процедуры содержимое регистров обычно перемещается в оперативную память, однако, если количество регистров достаточно велико, удается избежать значительной части длительных операций обмена с памятью, заменив их операциями с регистрами. Благодаря упрощенной архитектуре RISC-процессора, на микросхеме появляется место для размещения дополнительного набора регистров.

В настоящее время вычислительные системы с RISC-архитектурой занимают лидирующие позиции на мировом компьютерном рынке рабочих станций и серверов. Развитие RISC-архитектуры связано с развитием компиляторов, которые должны эффективно использовать преимущества большого регистрового файла, конвейеризации и т. д.


1. Общие вопросы решения "больших задач"

Под термином "большие задачи" обычно понимают проблемы, решение которых требует не только построения сложных математических моделей, но и проведения огромного, на многие порядки превышающие характерные для программируемых электронно-вычислительных машин, количества вычислений. Здесь применяют с соответствующими ресурсами электронно-вычислительные машины – размерами оперативной и внешней памяти, быстродействием линий передачи информации и др.

Верхний предел количества вычислений для "больших задач" определяется лишь производительностью существующих на данный момент вычислительных систем. При "прогонке" вычислительных задач в реальных условиях ставится не вопрос "решить задачу вообще", а "решить за приемлемое время" (часы/десятки часов).

1.1 Современные задачи науки и техники, требующие для решения суперкомпьютерных мощностей

Достаточно часто приходится сталкиваться с такими задачами, которые, представляя немалую ценность для общества, не могут быть решены с помощью относительно медленных компьютеров офисного или домашнего класса. Единственная надежда в этом случае возлагается на компьютеры с большим быстродействием, которые принято называть суперкомпьютерами. Только машины такого класса могут справиться с обработкой больших объемов информации. Это могут быть, например, статистические данные или результаты метеорологических наблюдений, финансовая информация. Иногда скорость обработки имеет решающее значение. В качестве примера можно привести составление прогноза погоды и моделирование климатических изменений. Чем раньше предсказано стихийное бедствие, тем больше возможностей подготовиться к нему. Важной задачей является моделирование лекарственных средств, расшифровка генома человека, томография, в том числе и медицинская, разведка месторождений нефти и газа. Примеров можно привести много.

Моделирование процессов окружающей действительности с целью как улучшения условий жизни в настоящем, так и достоверного предсказания будущего, является одной из тенденций развития человечества. Математические методы и приемы цифрового моделирования во многих случаях позволяют разрешать подобные проблемы, однако с течением времени имеет место усложнение технологии решения подобных задач. Во многих случаях ограничением является недостаток вычислительных мощностей современных электронно-вычислительных машин.

Требования получить максимум производительности при минимальной стоимости привели к разработке многопроцессорных вычислительных комплексов; известны системы такого рода, объединяющие вычислительные мощности тысяч отдельных процессоров.

Ниже перечислены некоторые области человеческой деятельности, требующие для своего решения суперкомпьютерных мощностей использующих параллельные вычисления:

- Предсказания погоды, климата и глобальных изменений в атмосфере

- Науки о материалах

- Построение полупроводниковых приборов

- Сверхпроводимость

- Разработка фармацевтических препаратов

- Генетика человека

- Астрономия

- Транспортные задачи большой размерности

- Гидро и газодинамика

- Управляемый термоядерный синтез

- Разведка нефти и газа

- Вычислительные задачи наук о мировом океане

- Распознавание и синтез речи, распознавание изображений

Одна из серьезнейших задач – моделирование климатической системы и предсказание погоды. При этом совместно численно решаются уравнения динамики сплошной среды и уравнения равновесной термодинамики. Для моделирования развития атмосферных процессов на протяжении 100 лет и числе элементов дискретизации 2,6×106 (сетка с шагом 10 по широте и долготе по всей поверхности Планеты при 20 слоях по высоте, состояние каждого элемента описывается 10 компонентами) в любой момент времени состояние земной атмосферы описывается 2,6×107 числами. При шаге дискретизации по времени 10 минут за моделируемый промежуток времени необходимо определить 5×104 ансамблей (то есть 1014 необходимых числовых значений промежуточных вычислений). При оценке числа необходимых для получения каждого промежуточного результата вычислительных операций в 102÷103 общее число необходимых для проведения численного эксперимента с глобальной моделью атмосферы вычислений с плавающей точкой доходит до 1016÷1017.

Суперкомпьютер с производительностью 1012 оп/сек при идеальном случае (полная загруженность и эффективная алгоритмизация) будет выполнять такой эксперимент в течение нескольких часов; для проведения полного процесса моделирования необходима многократная (десятки/сотни раз) прогонка программы.

Проблема супервычислений столь важна, что многие государства курируют работы в области суперкомпьютерных технологий.

Государственная поддержка прямо связана с тем, что независимость в области производства и использования вычислительной техники отвечает интересам национальной безопасности, а научный потенциал страны непосредственно связан и в большой мере определяется уровнем развития вычислительной техники и математического обеспечения.

С целью объективности при сравнении производительность супер-электронно-вычислительных машин рассчитывается на основе выполнения заранее известной тестовой задачи ("бенчмарка", от англ. benchmark). Пиковая производительность определяется максимальным числом операций, которое может быть выполнено за единичное время при отсутствии связей между функциональными устройствами, характеризует потенциальные возможности аппаратуры и не зависит от выполняемой программы.

Недостатком метода оценки пиковой производительности как числа выполняемых компьютером команд в единицу времени (MIPS, Million Instruction Per Second) дает только самое общее представление о быстродействии, так как не учитывает специфику конкретных программ (трудно предсказуемо, в какое число и каких именно инструкций процессора отобразится пользовательская программа).